Complementing MDD for the Detection of
Software Architecture Erosion

MiIiSE@ICSE 2013, San Francisco, USA

Sebastian Herold
Andreas Rausch

Dept. of Informatics - Software Systems Engineering
Chair of Prof. Dr. Andreas Rausch

Julius-Albert-Str. 4,

D-38678 Clausthal-Zellerfeld, Germany

bl TU Clausthal

@ Clausthal University of Technology, Germany

:

Motivation: Software Architecture Erosion

Software Architecture Erosion:
the (progressive) process of divergence
between the realization of a software
system and its architecture.

Software Architecture Conformance:
Refinment and realization of a system
conform with the intended architecture.

A
© Sebastian Herold MDD and Software Architecture Erosion 19 May, 2013 2

Erosion happens in MDD, too!

Architecture Detailed
Design Design

@»_»@»D»@»

Architecture Design
Description Artefacts

Implementation

ImpleMtion

Artefacts

\ restricts /

*The intended architecture of a
system restricts its refinement
and implementation

*Erosion means violation of these
architectural rules

«Can partially be addressed by
model transformation and
consistency checking techniques

module Arch2Design
create QUT : UML from IN : Arch
rule LayerZPackage {
from
1 : Arch!Lavyer
to
p : UML!Package (
name <- l.name
ownedRule =
"Mothing in this package depends on
something contained in a package
created as result of the transfor-
mation of a laver above 1)

© Sebastian Herold

MDD and Software Architecture Erosion 19 May, 2013

Goals of our work

* We want to...

— ...complement MDD for detecting software architecture
erosion

— ...make architecture conformance checking more flexible w.r.t.
* Support of different artefact types and
* Checkable architecture aspects

— ... enable architects/developers to detect erosion more
efficiently and to stick to their architectures more easily.

How to Detect Erosion — Related Approaches

* From Model-Driven Development Research
— Model transformation techniques
— Consistency checking techniques

* From Software Architecture Research
— Dependency structure matrices
*Focusing on single architecture aspect: dependencies between modules

— Reflexion Modelling

*Focusing on single architecture aspect: dependencies between modules

— Code Query Language-Based Approaches
*Rarely integrated into MDD approaches

I

Main Concepts of the Proposed Approach

i Realization
Architecture _>- C
(Models,
Models :,
— _ Code, ...
haslllegalDep (Layer ?I) | [
| C; |
4 v
Architectural Rules Relational Relational
Structure

haslllegalDep (I1)
haslllegalDep(l2)
Reasoning System

(FOL Formulas) Structure
I
Knowledge Representation &
£ //

Conformance
Check

19 May, 2013

MDD and Software Architecture Erosion

| © Sebastian Herold

Architectural / Component-Based Ontology

SYSTEM

Component

Interface

implements
ALLOWED

DEPENDENCY

" © Sebastian Herold MDD and Software Architecture Erosion 19 May, 2013 7

Case Studies — Domain-Specitic Reference
Architectures

Investigated Reference Architecture: The Register Factory
Common Reference Architecture for applications of the German public
administration

Application landscape £]:= Application system
Domain Domain Domain
p g £ 3] £] 3] 3] 3] g
2R
i N a
o a £
£ 9
S =
» £] £] €] £]] €] i S o
g R
o o
o

*Architectural Aspects: 6 different patterns of the Register Factory
*Checked Artefacts: 60 KLOC Java Code + Spring XML data

Preparing the Reqister Factory for Checking —
Architecture Meta Model

ApplicationSystem Layer

* Xk
1 haslayer - name: String

- type: LayerType

Domain Component

1 hasSystem *

- name: String

- name: Strin
& - system: SystemType

- name: String

1
\:/<<use>>

<<enumeration>>
SystemType

Meta Model

- Register
- BusinessApplication

Instance (Intended Architecture)

<<layer>>
Gui

<<layer>>
Batch

B

<<layer>>
Service

[1][2][s]ls

<<layer>>
Core

[1][2]ls]s)

<<layer>>
Persistence

[2][2][s][s]

<<layer>>
Common

Notification

Announcement

Information

DataManagement

MM @@)]

Preparing the Register Factory for Checking —
Rule Definition

We derived formalized architecture rules from informal descriptions and

Interviews (hasFacade ?this)
Component (hasExceptionFacade ?this)
-name: String | (hasRemoteBeanFacade ?this)
(insecureExceptionFacadeMethod ?this ?sig)
(trespassesCompFacade ?this ?type ?innerType)
(violatesDataSovereignity ?this ?type ?persType)
(=>
(and

(isInternallyUsableOnly ?comp ?innerType)
(1sNotPartOfComponent ?comp ?type)
(existsUseDep ?type ?innerType)

)

(trespassesCompFacade ?comp ?type ?innerType)

Case Studies — Layered Architectures

Industrial Case Study
Architecture Aspects: Layers, not

documented, identified by interviews
Checked Artefacts: 130 KLOC Java Code,
reverse engineered UML design models

client

util |

v 14

presentation

A

«— webservic}es l
f§ 4

< applicationcob‘e

@ persistence |
>

JEdit Case Study
Architecture Aspects:

Checked Artefacts:
290 KLOC Java
Code

!;Q © Sebastian Herold MDD and Software Architecture Erosion 19 May, 2013 11

Discussion and Future Work

I

Approach is flexible as different case studies show

Architectural rules are formulated in terms of the ontology, hence
independent of checked meta models

Its performance allows conformance checking as dedicated
interactive job (not JIT) or as part of automatic build processes.

Future Work includes

— More intuitive definition of rules (composition of rules, graphically,
catalogs of rules for patterns, etc.)

— From detecting erosion towards repairing erosion: how to restore
architecture conformance in complex eroded systems.

Thank you for your attention!

it lx;

Are there any questions

¥

!;Q © 19 May, 2013

