
Research-Based Innovation with Industry:
Project Experience and Lessons Learned

Lionel Briand, IEEE Fellow
FNR PEARL chair

May 18th, 2013

MISE 2013, San Francisco, CA

Talk Objectives

•  Identify success criteria in research projects with
industrial collaborators

•  Share concrete and practical guidelines

•  Illustrated with recent, personal projects

2

Acknowledgements

•  Shiva Nejati

•  Mehrdad Sabetzadeh

•  Nadia Alshahwan

•  Domenico Bianculli

•  Morayo Adedjouma

•  Elizabeta Fourneret

•  Reza Matinnejad

•  Dan Di Nardo

•  Chetan Arora

•  Razieh Bejati

•  …
3

Luxembourg*

•  Smaller than Rhode Island

•  One of the wealthiest
countries in the world

•  Young research focused
university (2003) and Ph.D.
programs (2007)

•  ICT security and reliability
is a national research
priority

•  Priorities implemented as
interdisciplinary centres

•  International city and
university

•  Three official languages:
English, French, German

4

SnT*Centre*

•  SnT centre, Est. 2009: Interdisciplinary, ICT
security, reliability, and trust (SnT)

•  180 scientists and Ph.D. candidates, 20
industry partners

•  SVV Lab: Established January 2012,
www.svv.lu

•  15 scientists (Research scientists,
associates, and PhD candidates)

•  Industry-relevant research on system
dependability: security, safety, reliability

•  Four partners: Cetrel, CTIE, Delphi, SES, …

5

Engineering*Research*

•  “Engineering: The application of scientific and
mathematical principles to practical ends such as the
design, manufacture, and operation of efficient and
economical structures, machines, processes, and
systems.” (American Heritage Dictionary)

•  Engineering research: Innovative engineering solutions
–  Problem driven
–  Real world requirements
–  Scalability
–  Human factors, where it matters
–  Economic tradeoffs and cost-benefit analysis
–  Actually doing it on real artifacts, not just talking about it

6

Mo8va8on*

7

•  Closer industry involvement in MDE research:
•  Research informed by practice
•  Well-defined problems in context
•  Realistic evaluation
•  Long term industrial collaborations => Impact
•  Focus on pain points in industry

•  Lessen dichotomy between research and innovation

•  Research-driven innovation

•  How do we do that?

8 96 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /12 / $ 31. 0 0 © 2 012 I E E E

SOUNDING BOARD

continued on p. 93

Editor: Philippe Kruchten
University of British Columbia
pbk@ece.ubc.ca

Embracing the
Engineering Side of
Software Engineering
Lionel Briand

I HAVE NOW been a professional researcher
in software engineering for roughly 20 years.
Throughout that time, I’ve worked at univer-
sities and in research institutes and collabo-
rated on research projects with 30-odd pri-
vate companies and public institutions. Over
the years, I have increasingly questioned and
re! ected on the impact and usefulness of my
research work and, as a result, made it a pri-
ority to combine my research with a genu-
ine involvement in actual engineering prob-
lems. This short piece aims to re! ect on my
experiences in performing industry-relevant
software engineering research across several
countries and institutions.

Not So Hot Anymore
I suppose a logical start for this article is to
assess, albeit concisely, the current state of
software engineering research. As software
engineering is widely taught in many univer-
sities, due in large part to a strong demand
for software engineers in industry, the num-
ber of software engineering academics is sub-
stantial. The Journal of Systems and Soft-
ware ranks researchers every year, usually
accounting for roughly 4,000 individuals ac-
tively publishing in major journals.

When I started my career, software en-
gineering was de" nitely a hot topic in aca-
demia: funding was plentiful, and universi-
ties and research institutes were hiring in
record numbers. This clearly isn’t the case
anymore. Public funding for software engi-
neering research has at best stagnated, and
in many countries, declined signi" cantly.

Hiring for research positions is limited and
falls far below the number of software engi-
neering graduates seeking research careers.
Industry attendance at scienti" c software
engineering conferences is roughly 10 per-
cent, including the scientists from corporate
research centers. Adding insult to injury, in
many academic and industry circles, soft-
ware engineering research isn’t even consid-
ered to be a real scienti" c discipline. I’ll spare
you the numerous unpleasant comments
about the credibility and scienti" c underpin-
ning of software engineering research that
I’ve heard over the years.

This situation isn’t due to the subject mat-
ter’s lack of relevance. Software systems are
pervasive in all industry sectors and have be-
come increasingly complex and critical. The
software engineering profession repeatedly
tops job-ranking surveys. In many cases, most
of a product’s innovation lies in its software
components—for an example, think of the
automotive industry. In all my recent industry
collaborations, I’ve observed that all the is-
sues and challenges traditionally faced in soft-
ware development are becoming more acute.

So how can we explain the paradox of be-
ing both highly relevant and increasingly un-
derfunded and discredited?

Looking for Some Answers
Like other disciplines before us, because
we’re a young and still-maturing engineer-
ing " eld, we lack the credibility of more

Related*work*

9

•  [Mohagheghi & Dehlen 2008], [Hutchinson et al. 2011]:
•  Investigate success and failure factors for MDE in industry
•  Methods: literature reviews, surveys, and interviews

•  [Selic 2012]:
•  Reflection on both technical and non-technical considerations
to improve MDE penetration in the industry

•  Our focus:
•  MDE research in collaboration with the industry
•  Personal experience across many projects
•  Illustrated with (detailed) examples

MDE*Projects*Overview*(<*5*years)*

10

Company Domain Objective Notation Automation

ABB Robot controller Testing UML Model analysis for
coverage criteria

Cisco Video conference Testing (robustness) UML profile Metaheuristic search

Kongsberg Maritime Fire and gas safety
control system

Certification SysML + traceability Model slicing algorithm

Kongsberg Maritime Oil&gas, safety critical
drivers

CPU usage analysis UML+MARTE Constraint Solver

FMC Subsea system Automated
configuration

UML profile Constraint solver

WesternGeco Marine seismic
acquisition

Testing UML profile + MARTE Metaheuristic search

DNV Marine and Energy,
certification body

Compliance with safety
standards

UML profile Constraint verification

SES Satellite operator Testing UML profile Metaheuristic search

Delphi Automotive systems Testing (safety
+performance)

Matlab/Simulink Metaheuristic search

Lux. Tax department Legal & financial Legal Req. QA &
testing

Under investigation Under investigation

Industrial*collabora8on*model*

11

•  Adapted from [Gorschek et al 2006]

•  Similar to action research

•  Solving a real-world problem while studying the experience of
solving it [Davison et al 2004]

•  Difference with action research:
•  More conservative in terms of intervention
•  Researchers are not the agents of change

Defining*the*research*problems*

12

•  An early observational study can identify and
decompose these fundamental problems

Lesson: The stated problem is often a manifestation
of one or more fundamental problems

Example: Integration problem in subsea/automotive
systems

•  Investigation pointed to root causes of “integration problems”
•  Subsea: Configuration
•  Automotive: Balancing CPU usage

•  Observational study also essential for mapping the
terms used by an industry partner to the terms used
in the research literature

Subsea*Integrated*Control*Systems*

13

http://subseaworldnews.com/

Subsea Christmas (Xmas) tree

Production
Injection

13

Integration problems!

*ModelJBased*Configura8on*

14

Configuration
engineer

Instant validation

Value inference

Automated guidance

Integra8on*in*Power*Train*Systems*

15

AUTOSAR Models
sw runnables

sw runnables
AUTOSAR Models

Glue

Balancing*CPU*Usage*Across*OS*Cycles*

16

•  Challenge
–  Integration problems!

–  Many OS tasks and their many runnables run within a limited
available CPU time

•  The execution time of the runnables may exceed the OS cycles

•  Our goal
–  Reducing the maximum CPU time used per time slot to be

able to

•  Reduce the possibility of overloading the CPU in practice

•  Minimize the hardware cost

•  Enable addition of new functions incrementally

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms

✗

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms
✔

(a)

(b)

Fig. 4. Two possible CPU time usage simulations for an OS task with a 5ms
cycle: (a) Usage with bursts, and (b) Desirable usage.

its corresponding glue code starts by a set of declarations
and definitions for components, runnables, ports, etc. It then
includes the initialization part followed by the execution part.
In the execution part, there is one routine for each OS task.
These routines are called by the scheduler of the underlying
OS in every cycle of their corresponding task. Inside each
OS task routine, the runnables related to that OS task are
called based on their period. For example, in Figure 3, we
assume that the cycle of the task o1 is 5ms, and the period
of the runnables r1, r2, and r3 are 10ms, 20ms and 100ms,
respectively. The value of timer is the global system time. Since
the cycle of o1 is 5, the value of timer in the Task o1() routine
is always a multiple of 5. Runnables r1, r2 and r3 are then
called whenever the value of timer is zero, or is divisible by
the period of r1, r2 and r3, respectively.

Although AUTOSAR provides a standard means for OEMs
and suppliers to exchange their software, and essentially
enables the process in Figure 1, the automotive integration
process still remains complex and erroneous. A major inte-
gration challenge is to minimize the risk of CPU shortage
while running the integrated system in Figure 1. Specifically,
consider an OS task with a 5ms cycle. Figure 4 shows two
possible CPU time usage simulations of this task over eight
time slots between 0 to 40ms. In Figure 4(a), there are bursts
of high CPU usage at two time slots at 0ms and 35ms, while
the CPU usage simulation in Figure 4(b) is more stable and
does not include any bursts. In both simulations, the total
CPU usage is the same, but the distribution of the CPU usage
over time slots is different. The simulation in Figure 4(b) is
more desirable because: (1) It minimizes the hardware costs
by lowering the maximum required CPU time. (2) It facilitates
the assignment of new runnables to an OS task, and hence,
enables the addition of new functions as it is typically done in
the incremental design of car manufacturers. (3) It reduces the
possibility of overloading CPU as the CPU time usage is less
likely to exceed the OS task cycle (i.e., 5ms) in any time slot.
Ideally, a CPU usage simulation is desirable if in each time
slot, there is a sufficiently large safety margin of unused CPU
time. Due to inaccuracies in estimating runnables’ execution
times, it is expected that the unused margin shrinks when the
system runs in a real car. Hence, the larger is this margin, the
lower is the probability of exceeding the limit in practice.

In this paper, we study the problem of minimizing bursts
of CPU time usage for a software system composed of a
large number of concurrent runnables. A known strategy to
eliminate high CPU usage bursts is to shift the start time
(offset) of runnables, i.e., to insert a delay prior to the start of
the execution of runnables [5]. Offsets of the runnables must
satisfy three constraints: C1. The offset values should not lead

to deadline misses, i.e., they should not cause the runnables to
run passed their periods. C2. Since the runnables are invoked
by OS tasks, the offset values of each runnable should be
divisible by the OS task cycle related to that runnable. C3. The
offset values should not interfere with data dependency and
synchronization relations between runnables. For example,
suppose runnables r1 and r2 have to execute in the same time
slot because they need to synchronize. The offset values of r1
and r2 should be chosen such that they still run in the same
time slot after being shifted by their offsets.

There are four important context factors that are in line with
AUTOSAR [13], and have influenced our work:

CF1. The runnables are not memory-bound, i.e., the CPU
time is not significantly affected by the low-bound memory
allocation activities such as transferring data in and out of
the disk and garbage collection. Hence, our analysis of CPU
time usage is not affected by constraints related to memory
resources (see Section III-B).

CF2. The runnables are Offset-free [4], that is the offset of
a runnable can be freely chosen as long as it does not violate
the timing constraints C1-C3 (see Section III-B).

CF3. The runnables assigned to different OS tasks are
independent in the sense that they do not communicate with
one another and do not share memory. Hence, the CPU time
used by an OS task during each cycle is not affected by other
OS tasks running concurrently. Our analysis in this paper,
therefore, focuses on individual OS tasks.

CF4. The execution times of the runnables are remarkably
smaller than the runnables’ periods and the OS task cycles.
Typical OS task cycles are around 1ms to 5ms. The runnables’
periods are typically between 10ms to 1s, while the runnables’
execution times are between 10ns = 10�5ms to 0.2ms.

Our goal is to compute offsets for runnables such that the
CPU usage is minimized, and further, the timing constraints,
C1-C3, discussed earlier above hold. This requires solving
a constraint-based optimization problem, and can be done in
three ways: (1) Attempting to predict optimal offsets in a de-
terministic way, e.g., algorithms based on real-time scheduling
theory [6]. In general, these algorithms explore a very small
part of the search space, i.e., worst/best case situations only
(see Section V for a discussion). (2) Formulating the problem
as a (symbolic) constraint model and applying a systematic
constraint solver [14], [15]. Due to assumption CF4 above,
the search space in our problem is too large, resulting in
a huge constraint model that does not fit in memory (see
Section V for more details). (3) Using metaheuristic search-
based techniques [9]. These techniques are part of the general
class of stochastic optimization algorithms which employ
some degree of randomness to find optimal (or as optimal
as possible) solutions to hard problems. These approaches are
applied to a wide range of problems, and are used in this paper.

III. SEARCH-BASED CPU USAGE MINIMIZATION

In this section, we describe our search-based technique for
CPU usage minimization. We first define a notation for our
problem in Section III-A. We formalize the timing constraints,

Contextual*factors*

17

•  Contextual factors (incl. assumptions) determine

•  what is feasible and what is not
•  what is cost-effective and what is not
•  what can be reused from the existing literature
and what needs a novel solution

Lesson: Context matters!

Examples:
•  Automotive: Use of Matlab/Simulink, test phases
•  Model-driven Testing based on Matlab/Simulink

•  Satellite: Many stakeholders, requirements in natural language
• Quality assurance for natural language requirements?

Satellite*Ground*Control*Systems*

18

•  MOC (Mission Operations Centre) system in EDRS
(European Data Relay Satellite)

Many*stakeholders,*Three*Tier*Requirements*

19

•  Many opportunities for misunderstanding and changes

•  Focus on automated requirements quality assurance
•  Natural language requirements

Applying*Templates*
•  Motivation: Requirements statements are often expected to follow a
sentence template to maximize comprehension and minimize
ambiguity

•  Example [Rupp 2009]

•  Manually checking of conformance to templates is very tedious
•  Especially in the context of many stakeholders and changes
•  Questions: Can conformance to templates be checked automatically?
Do we need a glossary of key phrases (domain concepts)?

20

Syntac8c*checking*(con8nued)*

•  Commercial tools already exist for syntax checking BUT …
•  Results are poor when the glossary terms have not been specified
•  … research suggests that most projects have substantial omissions in
glossaries, particularly in early stages

•  Our goal: syntax checking with minimal reliance on glossaries
•  … and provide recommendations for glossary terms

21

System Stakeholder

Action Verb Object

Example:

The Monitoring and Control component shall provide the system operator
with the ability to configure the database polling interval.

Conforms to template? Yes

Solu8on*Overview*

22

Glossary of key phrases not necessary

Tool*snapshot*

23

Context*Factors?*

•  Natural languages requirements

•  Many stakeholders

•  Frequent changes

•  Requirements documents approved as contractually
binding

•  …

24

Complexity*and*amount*of*soTware*used*on*vehicles’**
Electronic*Control*Units*(ECUs)*grow*rapidly**

More functions

Comfort and variety

Safety and reliability

Faster time-to-market

Less fuel consumption

Greenhouse gas emission laws

25

Three*major*soTware*development*stages*in**
the*automo8ve*domain*

26

MiL*tes8ng*

Requirements

•  The ultimate goal of MiL testing is to
ensure that individual functions behave
correctly and timely on any hardware
configuration

•  But is also a mechanism to select HiL test
cases

Individual Functions

27

Context*Factors?*

•  Stages of testing
•  Final testing stage extremely expensive and time

consuming

•  Systematic use of Matlab/Simulink at early stages

28

Improving*domain*understanding*and*communica8on*

29

 •  Helps researchers better understand the domain
•  An essential communication tool between partners and
practitioners
•  By product: Helps practitioners better organize, refine and
share their knowledge

Lesson: Build a domain model as early as possible.

Examples:
•  Subsea: 71 classes: 46 for software and 24 for hardware
•  Captures SW-HW relationships, configurable parameters,
variability points (60 – 80 person hours to build)
•  Tax law: next

Subsea*Domain*Model*(Using*SimPL)*

30

PA
PE

R
1

5.
T

H
E

SI
M

PL
M

O
D

E
L

IN
G

M
E

T
H

O
D

O
L

O
G

Y

Fi
gu

re
17

:E
xt

en
si

on
to

th
e

cl
as

s
di

ag
ra

m
in

Fi
gu

re
14

,s
ho

w
in

g
th

e
va

ria
bi

lit
y

po
in

ts
an

d
co

nfi
gu

ra
tio

n
un

its
.

81

Verifica8on*of*Tes8ng*and*Legal*Requirements*

31

IT
Engineers

Models

(i.e. without attachments), medium and large). However,
we should not expect a general agreement among users of
what can be considered as a medium message (or a small or
a large one respectively).

Figure 5. “When should I truncate?"

No-limit/Allow any
message

OR

Set limit to the size of
incoming messages

Allow only small messages
(those without attachment)

OR

Allow messages of
medium size

OR

Allow messages of
large-size

OR

Do not download
messages larger

than... = [No]

Do not download
messages larger

than... = [No]

(amount of Kbytes)...
= [[MsgSize].[S]]

(amount of Kbytes)... =
[[MsgSize].[M]]

(amount of Kbytes)... =
[[MsgSize].[L]]

Reduce Local Disk
Space Consumption

Reduce Network
Traffic Volume Cost

[d]

[d][d]

[f]
[f]

[f] [e]

[e]

Avoid Occasional
Network Congestions

[e]

[g]

Reduce Connection
Time Cost

[g] [g]--
-

Probability to misuse a
message (not attend it

properly)

Figure 6. Parameterizing goal models

Hence, we should rely on parameters which are valuated
using facts particular to each user. In our example, we can
use simple statistics based on the user’s e-mail traffic. The
result would be descriptions like the following:

[MsgSize].[S]: Average size of messages that
do not contain attachment. 50k by default

[MsgSize].[M]: Average size of messages that
contain at least one attachment. 1Mb by
default

...
Such parameter descriptions are essential part of the goal

model as they further enhance its adaptability to different
cases of users.

The same approach can be used to parameterize degrees
of contribution. In Figure 6, let us focus on two of the soft-
goals that are influenced by the available options. The one
is [Avoid Occasional Network Congestions]
that may occur when downloading a large attachment
through a slow connection; the goal refers to the frustration
or reduction of productivity this may cause. The second
is [Reduce Connection Time Cost] which might
be of importance depending on the charging policy of the
internet service provider.

The degree by which downloading a message of a partic-
ular size can hurt these goals cannot be generally assessed.

Thus we will again use parameters. For the first goal we
will base the estimation on the time it takes for the message
to download given the available bandwidth:

e =






0, if (selected msg size)
(bandwidth) < 2 sec

−1, if 2 sec < (selected msg size)
(bandwidth) < 1 min

−2, if 1 min < (selected msg size)
(bandwidth)

Similarly, the contribution to the goal [Reduce Con-
nection Time Cost]

f =
(selected msg size)

(bandwidth)
×(cost per second)×(scaling factor)

Here, the scaling factor expresses the “significance” of
the objective cost for the particular user, in a way that the
formula returns a value between −2 and 0. Models for pa-
rameters d and g can be constructed similarly.

Of course, all models we mention above are naive exam-
ples and are given in order to illustrate how we can define
parameters in goal models. How elaborate the parameter
models should be, varies depending on the degree of granu-
larity and accuracy that needs to be achieved, the available
domain expertise, as well as the cost for the acquisition of
the appropriate measurements. In the worst case, a parame-
ter is “hardcoded” with a fixed value. In a better case, state-
of-the-art machine learning and monitoring frameworks can
be used to model the goal parameters and acquire the nec-
essary measurements respectively.

Parameterized goal models can provide a framework for
achieving synergy between adaptability and adaptiveness
([3]). On one hand, the selection of a particular alternative
in the goal model is a result of having the user to specify
her intentions. On the other hand, parameter models reflect
facts about the system, the context or even the user (e.g.
patterns/models of her behavior), that allow the system to
automatically adjust how exactly the user intention should
be translated into the actual system configuration. Thus, if
parameters are used, a system configuration may change not
only because the user intentions changed, but also because
the system decided to interpret them in a different way.

6. In Practice

In this section, we discuss our experience in applying the
method to Mozilla Thunderbird.

A preliminary step is to understand what aspect of the
system each item actually configures. In Table 1, we at-
tempt a categorization: although the majority of the items
configure functional and behavioral aspects of the system,
many of them are mainly either what we call structural
data (e.g. Login Name, Server Address, Folder

Context
models

Test
models Analysis

models

(Legal)
Requirements

models

Ac)vi)es

Lawyers

Public
Administration

Bodies

Stakeholders

Traceability+
Modeling+and+
Impact+Analysis

Automated+
Conformance+

Tes9ng

Requirements++
Modelling+and+
Transforma9on

Legal+Text+
Annota9on+
and+Markup

Traceability
models

Requirements+
Quality+

Assurance

Auditors

Users

Legal*Requirements:*Traceability*

32

System Requirements

 Model

+ Constraints

Test Requirements

 Model

+ Constraints

Tests

+ Tags
Tags

Tags

Law

Analysis*and*Verifica8on*of*Legal*Requirements*
*

33

•  Consistency checking of legal

requirements
•  The requirements are

“interpretations” of the law and
could therefore be inconsistent

•  Handling the constant evolution
of the law

•  How does the evolution of the
law impact legal requirements
and the developed system

•  Automated testing and run-time
verification

•  Identification of defects in the
developed software both before
and after deployment

(Very)*Par8al*Domain*model*for*one*Ar8cle*

34

Art.2 : Individuals are considered resident taxpayers if they have either their fiscal or habitual residence in
the Grand Duchy. Individuals are considered non-resident taxpayers if they neither have their fiscal nor their
habitual residence in the Grand Duchy and if they have local income within the meaning of section 156.

Resident taxpayers are subject to income tax because of their income, both local and foreign.

Non-resident taxpayers are subject to income tax only because of their local income within the meaning of
section156 below.

Ques8ons*for*Legal*Experts*

35

•  Many interesting questions arise during modeling as the result
of following a systematic process:

•  Examples:

•  How many fiscal and habitual residences can a tax payer
have?

•  Multiplicities over associations between taxpayer and
the relevant concepts

•  What is local income:
•  Do we refer to income paid by a Luxembourgish
company ? or
•  to income earned over work rendered in Luxembourg?

Important as in early stages, researchers need
to mentor by doing what they preach!

Considera8ons*about*input*

36

•  The input has to match the expertise, culture, and processes
at the industry partner

Lesson: Input models should be feasible to build!

Example: safety-critical drivers in fire&gas monitoring
•  SysML was used as the basis for modeling
•  A general methodology was developed and later simplified
according to project needs and expertise of the partner
•  Tool support was developed over a short time building on
Enterprise Architect and its SysML plugin

Lesson: Use standardized notations when possible

•  Allows building on existing tools
•  Avoids technology lock-in
•  Reduces communication issues in a multi-organization setting

Gas&Fire**Monitoring*and*Emergency*Shutdown*

Interface

Control Modules

Hardware

Communicates commands and
data between control modules

and hardware

Expensive and lengthy
certification by third party
certifier

Observa8on*Study*of*Cer8fica8on*Mee8ngs*

•  System certified by third party
•  Drivers are SIL 3
•  Attended certification meetings (observational study)
•  Meetings focused on requirements, architecture, and design
documents
•  Analyzed 66 distinct certification issues

61%

7 %

N
um

be
r

of
 is

su
es

32 %

Various
forms of
traceability
mandated
by
standards

Objec8ves,*Language,*Tool*

39

Traceability
Methodology
to relate safety
Requirements to design

Slicing
Algorithm
to extract a design slice
relevant to a given
safety requirement

Modeling*Methodology*

40

Automa8on:*SafeSlice*

41

•  Support Establishing Traceability
•  Generate Slices
•  Inspection Assistant

Less*than*perfect*input*

42

Be prepared for less than perfect models

•  Better models lead to better analysis results BUT …
•  When scales are large, compromises often have to be made
•  Question: Can the proposed approach still be useful in the
presence of incompleteness and imprecision?

Example:
•  CPU usage analysis for runnables in power train systems
•  Can runnables run out of CPU?
•  Can we minimize the risk?
•  Imprecise WCET estimates
•  Approximate knowledge of dependencies between runnables
•  No possibility of using model checking (also related to previous
points about feasibility of inputs)

43

We*minimize*the*maximum*CPU*usage*using*
runnables*offsets*(delay*8mes)*

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms ✗

✔

Inserting runnables’ offsets

Offsets have to be chosen such that
the maximum CPU usage per time slot is minimized, and further,

 the runnables respect their period
 the runnables respect the OS cycles
 the runnnables satisfy their synchronization constraints

43

44

Meta*heuris8c*search**algorithms*

Case Study: an automotive software system with 430 runnables

Running the system without offsets

Simulation for the runnables in our case study and
corresponding to the lowest max CPU usage found by HC

5.34 ms

Our optimized offset assignment

2.13 ms

-  The objective function is the max CPU usage of a 2s-simulation of
runnables

-  Single-state search algorithms for discrete spaces (e.g., Tabu)
-  The search modifies one offset at a time, and updates other offsets

only if timing constraints are violated
-  Used restart option to make them more explorative

44

Training*

45

•  Long course on the whole (UML) is not a good idea!
•  Training must match what the proposed solutions need

Lesson: Train incrementally and based on needs

Example: Data Acquisition Systems (Satellites)
•  Specific modeling methodology to support model-based
testing in this domain
•  Course on how to use UML and OCL with that methodology
•  Used an actual DAS for training

Lesson: Use examples and illustrations from the
industry partner’s application domain

•  Textbook examples are often met with yawns!
•  They have seen them all, several times!

•  Quote from practitioner: “All these courses I attend use the
ATM example. I want to see how UML is applied to our system”.

46

Context: Data Acquisition Systems

DAS

Configurations

Log Files

Data

Structured/Complex

Defines
how input
files are
processed

Captures what
happened while
processing

Modeling and Test Automation Approach

47

Modeling

Input/output
Model

XSVE
System

Data

Log files

Test
Cases

Oracle
Checker

Mutation

Input/output
Model ̀

Selection

Input/output
Model ̀

Input
Generator

•  Model structure and content of input,
configuration, and output files

•  Model their mapping

Early*valida8on*not*synonymous*with*
ar8ficial*valida8on*

48

Validation in an artificial setting may have limited
value or may be impossible

•  Artificial validation is not useful if benchmarks are non-existent
or are found to be unsuitable
•  Contextual factors and level of complexity of the benchmarks
should be a match for the project
•  Meaningful artificial validation may even be impossible!

Example: MiL and HiL Testing ECU control software
•  MiL testing requires actual Matlab/Simulink models
•  Realistic search performance and fault detection
•  HiL testing: dedicated hardware

Testing Controller and Plant Simulink Models

Plant
Model

Controller
(SUT)

Desired value Error

Actual value

System output+
-

=<

~= 0
>=

time time time

D
es

ire
d

Va
lu

e
&

Ac
tu

al
 V

al
ue

Desired Value
Actual Value

(a) (b) (c)Liveness Smoothness Responsiveness

x

y

z

v

w

49

MiL-Testing of Continuous Controllers

Exploration+
Controller-
plant model

Objective
Functions

Overview
Diagram

Test
Scenarios

List of
Regions Local SearchDomain

Expert

time

Desired Value
Actual Value

0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Initial Desired

Final Desired

50

Random Search vs. (1+1)EA
Example with Responsiveness Analysis

Random (1+1) EA

51

Random search might have done well with a simple
artificial example

Choosing*pilot*studies*

52

A good pilot study should be (1) representative, (2)
feasible, and (3) relevant to current needs

•  Representative: reflective of the characteristics of the industry
partner’s systems
•  Feasible: commensurate with pilot study resources
•  Relevant: dealing with ongoing activities, planned future
activities, or past activities with a horizon for future reuse
•  Quick Research impact!

Example:
•  Data Acquisition System: system currently under maintenance,
transmitted files in typical range, real test suite
•  ECU software: typical closed loop controller, being tested, in
terms of configuration parameters
•  Satellite ground control: Requirements were being defined,
verified, and modified

Mentorship*

53

Lesson: Mentor by doing!

•  Be ready to provide a lot of help during realistic validation
•  To show commitment and set a good example

•  Mentoring is paramount if the partner is not using MDE
regularly
•  Once practitioners become proficient, researchers’ help
should be phased out

Example: Data Acquisition System
•  Modeling tutorials
•  Modeled an actual DAS with their help
•  Mentoring on modeling other DAS

Drumming*up*support**

Lesson: Find internal champions for the solution.

•  One or more champions are needed to:
•  spread the word about the research
•  connect the dots for the management
•  develop a strategy for integrating the solution

•  Champions need to have developed a strong sense of
trust in the researchers and the research
•  Champions are usually people with a genuine intellectual
interest in the topic
•  You need to support them and make them excited and
proud about what they do. Show your appreciation.
•  It may take time to find the right person in the
organization

Managing*the*rela8onship*with*industry*partners*

55

•  Focus must be kept on recurring, long-lasting, and
unsolved problems

•  Expectations that cannot be met
•  Working as a consultant
•  Building professional tools

•  Avoid short-term partnerships
•  At least 3 years of commitment to be expected

•  Bare minimum to conclude the research for a PhD
•  This usually tips the balance in favor of collaboration with
larger organizations

•  Communicate and follow up frequently
•  If you have not talked to a partner company in 3
months then something is wrong!

Publishing*the*results*

56

•  Possible tension between the research model and
publication:

•  Industry is interested in end-to-end solutions
•  A solution often has different components, each belonging
to a different (SE) research community
•  Not always easy to determine how to report and what
venue to aim for
•  Example: Metaheuristic search and MDE in Delphi example
on CPU balancing

•  More thorny issue: interdisciplinary results!
•  Many real-world problems are at a systems level

•  Software is only one part and may be difficult to isolate from
hardware and mechanical devices
•  Interdisciplinary work is still notoriously hard to publish!
•  More room is needed for systems engineering research

FAQ*

57

•  Aren’t your research results specific to an industry
partner? How do they generalize?

•  SE solutions are generally not applicable across domains
•  Partners are not unique, they capture the practices of an industry
•  We are better off with solutions that apply to a domain, than
solutions that have not shown to apply anywhere
•  Generalization comes from replications
•  Make your working assumptions explicit

•  Aren’t we constraining our creativity as researchers?
Shouldn’t we focus on “good” idea?

•  In engineering, it is as “good” as it works
•  Everything else is marketing or academic hype

•  Shouldn’t we work, as researchers, on future problems
the industry will face?

•  How can anybody claim to know future needs without
understanding current ones?

Summary*

58

•  Introduced a research paradigm & process, and general
lessons learned that can be useful to other researchers

•  Research is coupled with knowledge transfer

•  It promotes intertwining of research and industrial innovation to
increase the impact of research

•  Emphasis is placed on early involvement of industry

•  This increases chances of impact and adoption, mentoring
opportunities, and creates a sense of ownership

•  Work to be viewed as a step towards reducing the gap between
software engineering research and practice

Contact'Info:'
Lionel*Briand*
lionel.briand@uni.lu**
*
SoTware*Verifica8on*and*Valida8on*Laboratory*(h_p://www.svv.lu)**
Centre*for*ICT*Security,*Reliability,*and*Trust*(SnT)*
University*of*Luxembourg*
*

Ques8ons?*

Thank*you!*

References*on*MDE*Adop8on*and*Transfer*

60

•  [Mohagheghi & Dehlen 2008]: P. Mohagheghi, V. Dehlen. Where Is the
Proof? - A Review of Experiences from Applying MDE in Industry.
ECMDA-FA 2008.

•  [Hutchinson et al. 2011]: J. Hutchinson, J. Whittle, M. Rouncefield, S.

Kristoffersen. Empirical assessment of MDE in industry. ICSE 2011.

•  [Selic 2012]: B. Selic. What will it take? A view on adoption of model-

based methods in practice. Softw Syst Model, 2012.

•  [Gorschek et al 2006]: T. Gorschek, P. Garre, S. Larsson, C. Wohlin. A

Model for Technology Transfer in Practice. IEEE Software 23(6), 2006.

•  [Davison et al 2004]: R. Davison, M. Martinsons, N. Kock. Principles of

canonical action research. Information Systems Journal (14), 2004.

Selected Personal References

•  L. Briand, Y. Labiche, and M. Shousha, “Using genetic algorithms for early
schedulability analysis and stress testing in real-time systems”, Genetic
Programming and Evolvable Machines, vol. 7 no. 2, pp. 145-170, 2006

•  M. Shousha, L. Briand, and Y. Labiche, “UML/MARTE Model Analysis Method
for Uncovering Scenarios Leading to Starvation and Deadlocks in Concurrent
Systems”, IEEE Transactions on Software Engineering 38(2), 2012.

•  Z. Iqbal, A. Arcuri, L. Briand, “Empirical Investigation of Search Algorithms for
Environment Model-Based Testing of Real-Time Embedded Software”, ACM
ISSTA 2012

•  S. Nejati, S. Di Alesio, M. Sabetzadeh, L. Briand, “Modeling and Analysis of
CPU Usage in Safety-Critical Embedded Systems to Support Stress Testing”,
ACM/IEEE MODELS 2012

•  Shiva Nejati, Mehrdad Sabetzadeh, Davide Falessi, Lionel C. Briand, Thierry
Coq, “A SysML-based approach to traceability management and design slicing
in support of safety certification: Framework, tool support, and case studies”,
Information & Software Technology 54(6): 569-590 (2012)

•  Lionel Briand et al., “Traceability and SysML Design Slices to Support Safety
Inspections: A Controlled Experiment”, forthcoming in ACM Transactions on
Software Engineering and Methodology, 2013

61

Selected Personal References (cont.)

•  Rajwinder Kaur Panesar-Walawege, Mehrdad Sabetzadeh, Lionel C. Briand:
Supporting the verification of compliance to safety standards via model-driven
engineering: Approach, tool-support and empirical validation. Information &
Software Technology 55(5): 836-864 (2013)

•  Razieh Behjati, Tao Yue, Lionel C. Briand, Bran Selic: SimPL: A product-line
modeling methodology for families of integrated control systems. Information &
Software Technology 55(3): 607-629 (2013)

•  Hadi Hemmati, Andrea Arcuri, Lionel C. Briand: Achieving scalable model-based
testing through test case diversity. ACM Trans. Softw. Eng. Methodol. 22(1): 6
(2013)

•  Nina Elisabeth Holt, Richard Torkar, Lionel C. Briand, Kai Hansen: State-Based
Testing: Industrial Evaluation of the Cost-Effectiveness of Round-Trip Path and
Sneak-Path Strategies. ISSRE 2012: 321-330

•  Razieh Behjati, Tao Yue, Lionel C. Briand: A Modeling Approach to Support the
Similarity-Based Reuse of Configuration Data. MoDELS 2012: 497-513

•  Shaukat Ali, Lionel C. Briand, Andrea Arcuri, Suneth Walawege: An Industrial
Application of Robustness Testing Using Aspect-Oriented Modeling, UML/
MARTE, and Search Algorithms. MoDELS 2011: 108-122

62

