
Modeling the Environment
in Software-Intensive Systems

Carlo A. Furia, Matteo Rossi, and Dino Mandrioli

Dipartimento di Elettronica e Informazione
Politecnico di Milano

MISE Workshop @ ICSE 2007
May 19-20, 2007

Minneapolis, USA

Outline

● Software-Intensive Systems
● What to Model?
● What to Model Formally?
● Pushing Formalization Deep in the

Environment
– Caveats

● Example sketch: Jackson's Traffic System
● Conclusions

Software-Intensive Systems
● Software becomes pervasive

● embedded
● networked
● heterogeneous
● ...

● Software-Intensive System
– software components

● interact with
– non-software components

● from the physical world
– e.g., mechanical, chemical, social, ...

Software-Intensive Systems

● Software interacting with Environment
● Properties of the environment

– indicative
● world as it is

– optative
● requirements

● Specification
● Software-engineering viewpoint

● often SIS are controlled systems
● but traditional control modeling techniques are not

suited to model software and environment

What to Model?

● Environment
– both world as it is
– and requirements

● Software system
– specification

● Their interaction
● E.g., reference (meta-)model

– and derived meta-models

What to Model Formally?
● Problem:

● how much
● how deep

– to formalize in a SIS model?
● In particular for the environment

– (some) requirements intrinsically informal?
● can't formalize much?

– requirements are
“deep in the environment” (M. Jackson)?

● can formalization go deep too?
● formalization gets very demanding easily?

What to Model Formally?

● Our view:
– formalization

● can be and
● should be

– pushed “deep in the environment”

Can Be Formalized

● Most application domains allow formalization
– at least partially
– even if they're considered intrinsically informal
– even if the formalization may be complex and/or

costly
● Scattered examples:

– social organizations
– psychology of choice

● games, bounded rationality, etc.

Should Be Formalized

● Formalization brings conspicuous benefits
– early detection of errors and misunderstanding
– better understanding of application domain
– shows that more things can be formalized
– ...

● The great cost/complexity is usually traded-
off favorably against benefits

Caveats

● Formalization ameliorate several aspects, but
it's no silver bullet
– it doesn't replace completely non-formal

approaches
– better: incremental application of formalization

● Advantages and efforts depend on several
factors:

● context / application domain
● goals
● ...

– Don't have to formalize always and everything

Example sketch:
Jackson's Traffic System

Example sketch:
ArchiTRIO Formal Notation

● UML diagrams
– system's components and structure

● class diagrams
● composite structure diagrams

● TRIO logic formulas
– real-time temporal logic

Example sketch:
Deep in the Environment

Example sketch:
World Formalization

∀e: T (depart(e) ⇒ e = s.head)

●Formalization of DynamicQueue
● according to the need of our domain

– Vehicles in queue cannot change their relative
positions (i.e., no overtakes or U-turns when in
queue)

Example sketch:
World Formalization

∀q: Queue[T]: (¬q.isEmpty ⇒
(s = q ⇔

Since(¬∃e1: T (arrive(e1) ∨ depart(e1)),
∃e2: T, q': Queue[T] (

(arrive(e2) ∧ s = q' ∧ q = q'.enqueue(e2))
∨

(depart(e2) ∧ s = q' ∧ q = q'.dequeue)))))

●Formalization of DynamicQueue
● according to the need of our domain

– Behavior of elements in queue over time

Example sketch:
Requirements

∀r1, r2: RoadEnd (conflicting(r1, r2)
∧ ∃v1: Vehicle (r1.vehicles.depart(v1))

⇒
¬∃v2: Vehicle (Within(r2.vehicles.depart(v2), TSAFE)) ∧
¬∃p: Pedestrian (Within(r2.pedests.depart(p), TSAFE)))

●Formalization of “Orderly Safe Traffic”
● based on world formalization

– no two items coming from conflicting roads can
flow into the intersection within a short timespan

Example sketch:
Possible Developments

●Other formalizations of “Orderly Safe Traffic”
– more detailed

● requiring the formalization of more elements
– for more complex intersections
– ...

Example sketch:
Possible Developments

●How to meet the requirements?
– e.g., traffic lights

● with previous formalization of OST
● add them to the formal model
● early design decisions

– new formalized elements may in turn prompt us
to reconsider some previous assumptions

● e.g., vehicles in a queue can change relative
posititions when light is green

– iterative process
●Formal argument that requirements are met

Conclusions

● Environment in Software-Intensive Systems
● interacting with software components

● We can formalize significant portions
– push formalization deep in the environment

● We should formalize significant portions
– large effort, but usually pays off
– even if it seems “intrinsically informal” at first

● Formalization improves development quality
● not replacement but enhancement and complement

