
Everton Guimaraes
Alessandro Garcia
Eduardo Figueiredo
Yuanfang Cai

OPUS Research
Group

PRIORITIZING SOFTWARE
ANOMALIES WITH METRICS AND
ARCHITECTURE BLUEPRINTS

Introduction
•  The progressive insertion of software anomalies

•  Architectural Problems1,2,3

•  Architecture degradation4

• Most part of architecture relevant anomalies can not be
detected only by source code analysis

•  It is essential to distinguish which code anomalies
•  … have impact on software architecture
•  … should be prioritized and removed, so its propagation during the

system evolution can be avoided.

03/06/13 Empirical Software Engineering 2

1.  Macia, J. Garcia, D. Popescu, A. Garcia, N. Medvidovic and A. von Staa. Are Automatically-Detected Code
Anomalies Relevant to Architectural Modularity? . In Proc. of 11th AOSD, pp. 167-178, USA, March 2012.

2.  I. Macia, R. Arcoverde, A. Garcia, C. Chavez and A. von Staa. On the Relevance of Code Anomalies for
Identifying Architecture Degradation Symptoms. In Proc. of 16th CSMR, Szeged, Hungary, March 2012.

3.  J. Garcia, D. Popescu, G. Edwards and N. Medvidovic, Identifying Architectural Bad Smells. In Proc. of 13th
CSMR, March 2009.

4.  L. Hochstein and M. Lindvall. Combating Architectural degenerations: A Survey. Information and Software
Technology, Vol. 47, Issue 10, pp. 643-656, July 2005.

Context
• Detection Strategies

•  Metrics are the most popular artifact to detect severe anomalies
•  Developers can defined their own strategies (e.g. thresholds)
•  Most part of detection strategies in the state-of-art fail to assist

developers in prioritizing severe anomalies
•  Other limitations

•  The metrics alone are often agnostic to the architecture structure
•  Developers tend to consider that all measures and architecture

components have the same relevance.

03/06/13 Empirical Software Engineering 3

Context
• On the other hand…

•  Architecture design models are often of informal nature
•  Represent architecture blueprints

•  Blueprints are used for communication purposes.
•  Architecture blueprints are omnipresent in many software projects
•  However, it is unfeasible the collection of measures from them

• Our question is..
•  “to what extent the use of architecture blueprints would enhance

the prioritization of architecture relevant anomalies?”

03/06/13 Empirical Software Engineering 4

Software Anomaly
• Software Anomaly is a situation that suggests a potential

problem on software structure
•  Code Anomalies
•  Design Anomalies (e.g. architectural drift)

• Some anomalies..
•  … can be observed in other artifacts (e.g. architecture blueprints)
•  … while other anomalies can only be observed looking at the

source code.

• Also, studies revealed that…
•  Software anomalies are responsible for undesirable modifications

•  Ex1. Source code structure affects by anomalies is change proneness.
•  Ex2. code Anomalies also favor the occurrence of faults.

03/06/13 Empirical Software Engineering 5

Relevance of Code Anomalies

03/06/13 Empirical Software Engineering 6

<<subsystem>>

<<subsystem>>

GUI

Business HWFacade

Symptom

Complaint

Employee

<<subsystem>>

public class HWFacade{

 public void updateComplaint(..){..}
 public Complaint searchComplaint(..){..}
 public void insertComplaint(..){..}

 public void insertEmployee(..){..}
 public Employee searchEmployee(..){..}
 public void updateEmployee(..){..}

 public void insertSymptom(..){..}
 public Symptom searchSymptom(..){..}
 public void updateSymptom(..){..}
 ...
}

Architecturally

Relevant

Architecture Blueprints

03/06/13 Empirical Software Engineering 7

• Architecture design blueprints..
•  … have been exploited in many different software engineering

activities (e.g. model transformation optimization)

•  In this sense, we are investigating
•  how architecture blueprints would enhance the prioritization

process.
•  What information is useful to be showed in the architecture

design blueprint
•  For example: dependencies strength between components.
•  Additional information to complement the information provided by the

metrics and source-code.

Study Methodology
• Research Question

•  How can architecture blueprints help the prioritization of relevant
code anomalies?

• Hypothesis
•  H1: The use of architecture blueprints as additional artifact to

detect anomalies do not provide any enhancement on precision
measures.

•  H2: The use of architecture blueprints to improve the code
anomaly detection process do not impact on recall measures.

03/06/13 Empirical Software Engineering 8

Study Methodology
•  Target Application

•  Mobile Media SPL
•  Code Smells Reference List

• Experimental Procedures
•  Subjects were organized into 2 groups:

•  BP: group provided with code artifacts + architecture blueprints
•  NBP: groups provided only with code artifacts

•  Documentation describing Mobile Media

• Each group of subjects…
•  …should reason about the system information, architecture

blueprints and software metrics.
•  … identify which classes could be candidates to present code

anomalies.

03/06/13 Empirical Software Engineering 9

Controlled Experiment
• Our goal was to compare

•  “the efficiency of detecting code anomalies with and without the use
of architecture blueprints”

• So, we have used Precision and Recall measures.
•  These two metrics leverage to other three metrics.

•  True Positives
•  False Positives
•  False Negatives

03/06/13 Empirical Software Engineering 10

Controlled Experiment

Measure Anomaly N Mean (%) S.D.

BP NPB BP NPB BP NPB

Precision DC 10 24 47.9 43.6 26.7 27.1

GC 14 10 50.9 66.8 25.5 23.6

SS 11 20 25.8 21.5 5.4 19.8

Recall DC 10 24 44.5 39.1 16.7 28.4

GC 14 10 82.1 73.3 24.9 30.8

SS 11 20 33.0 21.3 0 24.3

03/06/13 Empirical Software Engineering 11

•  It is important to say that…
•  A high precision implies that identified more relevant anomalies

than the irrelevant ones.
•  A high recall implies that a subject identified most of the relevant

anomalies.

Controlled Experiment
• Architecture Design Blueprints and Precision

•  Precision has increased for 2 out of the three anomalies analyzed
•  Shotgun Surgery (4%)
•  Divergent Change (4.3%)

•  However, precision was not improved for God Class anomaly
•  Difference between groups was 16%.
•  Reasons:

•  It is a more intuitive anomaly than the other two
•  Some subjects have not followed the inspection process correctly

•  Misinterpretation of metrics values -> lead to a high number of False Positives.

03/06/13 Empirical Software Engineering 12

Measure Group N Mean (%) Calc. p-value

Precision BP 35 46.2 0.100

NBP 55 39.7

Controlled Experiment
• Architecture Design Blueprints and Precision

•  Recall measures increase for the BP group
•  Shotgun surgery (30%), Divergent Change (5.3%), God Class (8.8%)
•  Average recall measures increased by 21%

•  The use of blueprints..
•  Improved the effectiveness of anomaly detection
•  Decrease the number of False Negatives

•  The Lower the number of False Negatives, the higher is the Recall
measures

03/06/13 Empirical Software Engineering 13

Measure Group N Mean (%) Calc. p-value

Recall BP 35 62.3 0.001

NBP 55 41.3

Controlled Experiment
• Usefulness of Design Blueprints

•  Around 71.4% of subjects judged the architectural blueprints useful
on the detection and process

•  From this set of subjects…
•  We asked them to identify other information that would be helpful for

detecting and prioritizing relevant code anomalies.

03/06/13 Empirical Software Engineering 14

54,55%

9,09%

18,18%

9,09%

9,09%

Enough Information

Tracking changes

Dependency

Number of attributes/methods

Shared attributes

Final Remarks and Future Works
• Our findings..

•  The use of design blueprints has (somehow) improved precision
and recall measures.

•  Feedback from Subjects
•  Some of them has not correctly followed the inspection sequence
•  This can lead the detection of more False Positives

• Hypothesis…
•  H1 – we observed that the design blueprints can somehow improve

precision measures.
•  However the statistical tests indicate cannot be considered as being

statically significant
•  H2 - We observed that the recall measures were affected by the

used of design blueprints on the detection process.
•  This hypothesis can be confirmed with an acceptable statistical

significance.

03/06/13 Empirical Software Engineering 15

Rejected

Accepted

Final Remarks and Future Works
• Although this study was conducted with undergrad and

graduate students…
•  It is not a limitation because it a first investigation on how to

improve detection/prioritization of relevant code anomalies

• As a future work, we intend to:
•  Investigate more software anomalies that have been considered

relevant for software architecture.
•  Investigate what are the main characteristics of classes that led to

False Positives and False negatives
•  Provide architecture blueprint tailored with other substantial

information

03/06/13 Empirical Software Engineering 16

Thank You!

QUESTIONS?
Everton Guimaraes
Alessandro Garcia

Eduardo Figueiredo
Yuanfang Cai

OPUS Research
Group

