
A Relationship-Driven Framework for Model Merging ∗

Mehrdad Sabetzadeh Shiva Nejati Steve Easterbrook Marsha Chechik
Department of Computer Science, University of Toronto

Toronto, ON M5S 3G4, Canada.
Email: {mehrdad,shiva,sme,chechik}@cs.toronto.edu

Abstract

A key problem in model-based development is merging a
set of distributed models into a single seamless model. To
merge a set of models, we need to know how they are re-
lated. In this position paper, we discuss the methodological
aspects of describing the relationships between models. We
argue that relationships between models should be treated
as first-class artifacts in the merge problem and propose
a general framework for model merging based on this ar-
gument. We illustrate the usefulness of our framework by
instantiating it to the state-machine modelling domain and
developing a flexible tool for merging state-machines.

Keywords: Model-Based Development, Distributed Mod-
elling, Model Merging.

1 Introduction

An effective way to manage complexity and promote
flexibility in large-scale model-based development is to
describe a proposed system using loosely-coupled partial
models, known as views [10]. Each view considers the sys-
tem from a particular angle, making it possible to scope the
amount of information that analysts need to deal with at
any given time [9]. Further, by providing means for sep-
arating the contributions of different sources, views allow
stakeholders to express and maintain their individual per-
spectives on the system [8].

A key problem in view-based modelling is model merg-
ing. From time to time, we need to integrate information
from several models into a single one in order to gain a uni-
fied perspective, to understand interactions between mod-
els, or to perform various types of end-to-end analysis [17].
Model merging spans several application areas. In infor-
mation systems, model merging is an important step dur-
ing conceptual database design for constructing an abstract

∗Parts of this work were presented at the posters track of SIGSOFT
FSE’06, and an abstract appeared in Software Engineering Notes, V. 31,
No. 6, November 2006.

schema that captures the data requirements of all the in-
volved participants [4]. In ontology research, model merg-
ing may be employed to build a global ontology from a
set of local ontologies originating from different commu-
nities [11]. Software engineering deals extensively with
model merging – several papers study the subject in specific
domains including early requirements [17], use-cases [15],
class diagrams [2, 21], software architectures [1], state-
machines [16, 19, 14], and sequence diagrams [20, 7].

Model merging frameworks differ in several factors in-
cluding the notations they support, the contexts in which
they operate, and the assumptions they make about the na-
ture of models and their intended use. Despite these dif-
ferences, there are a number of common concerns that all
merge frameworks face. These concerns primarily have to
do with the methodological requirements of model merg-
ing and involve important questions about how to specify
the relationships between models, maintain traceability be-
tween models and their merges, and capture the evolution
of models during merge.

In this position paper, we focus on the question of how to
specify the relationships between models. Specification of
model relationships is a crucial step in the merge process for
characterizing how the contents of different models overlap
or interact. In the past several years, we have been study-
ing the model merging problem in different domains. With
hindsight, we have identified two key factors concerning the
specification of model relationships:

1. Models are often developed by distributed teams. As a
result, one can never be entirely sure how the concepts
in different models relate to one another. Therefore,
it is important to be able to hypothesize and explore
alternative ways of interrelating the concepts in a set of
models and to configure model merges based on these
alternatives.

2. Model merging may be utilized to achieve different
goals at different stages of development. For exam-
ple, in early stages, we may merge a set of models as
a way to unify the vocabularies of different stakehold-

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

ers. For this purpose, it is convenient to treat models as
syntactic objects without rigorous semantics. In later
stages, however, we often want to account for the se-
mantics of models and produce merges that preserve
certain semantic properties. This means that we may
need to apply different merge algorithms to a set of
models as they move through different stages of devel-
opment. These algorithms typically require different
types of relationships to be built between models (e.g.
syntactic and semantic). Hence, we need the flexibility
to define different types of model relationships and to
associate each type with certain merge algorithms.

These factors emphasize the need to make explicit all in-
formation about the relationships between models, and in-
deed suggest that model relationships should be treated as
first-class artifacts in the model merging problem. Such
treatment, as first noted by Bernstein et al. [5], will also
simplify the implementation of the merge operation.

In light of this observation, we propose a general frame-
work for model merging whereby the relationships between
models can be specified explicitly and used for driving the
merge process. Figure 1 shows an outline of our framework:
Given a set of models, users can define different types of
relationships between them and for each type, explore al-
ternative ways of mapping the models to one another. The
models and a selected set of relationships are then used to
compute a merge by applying an appropriate merge algo-
rithm. The merge is then presented to users for further anal-
ysis which may lead to the discovery of new relationships
or the invalidation of some of the existing ones. Users may
then want to start a new iteration by revising the relation-
ships and executing the subsequent activities.

Define
Relationships

Input Views

Compute Merge
Relationships

Merged View

Merge
Algorithm n

Merge
Algorithm 1 · · ·

Figure 1. Outline of our framework

We have implemented a proof-of-concept tool, TReMer 1

[18], based on our proposed framework. We describe this
tool in the next section.

2 Tool Support
Our tool, TReMer, is an instantiation of the framework

outlined in Figure 1 to the domain of state-machine mod-
elling. TReMer currently supports two model merging al-
gorithms, structural and behavioural, as described below.

Structural merging is used during early phases of devel-
opment where the most important goals are: exploring the
ontological relationships between the terms used in differ-
ent models, aligning the conceptual structures of different
stakeholders, toleration of inconsistencies and deferral of
their resolution to later phases, and producing an overall
perspective of the system being developed. Our structural
merging algorithm treats state-machines as graphs [16]. Re-
lationships between state-machines are captured by sub-
graphs, also referred to as connectors. Merges are computed
based on a category-theoretic concept called colimit [3].
Colimit computation is based on syntactic relationships be-
tween graphs, without regard to their underlying semantics.
Therefore, merges may not preserve the semantic properties
of state-machines.

Our second algorithm, behavioural merge, is motivated
by the need to preserve the behavioural properties of a set
of state-machines in their merges. The desirable behaviours
of each state-machine are described using temporal logic
formulas. Behavioural merging is more suitable for late
stages of development where the goal is to obtain a sound
and operational model of the system under development. In
behavioural merging, it is assumed that any disagreements
between stakeholders have already been resolved, and as
such, all remaining discrepancies between the behaviours of
the input models are treated as variabilities in the models’
intended functionality. These variabilities are represented
as conditional behaviours in the merge. Relationships be-
tween state-machines are specified by binary relations over
their state spaces. The merge is defined as a common refine-
ment of a set of state-machines with respect to their relation-
ships [19, 14]. This guarantees the preservation of temporal
properties. Merges computed by our behavioural merging
algorithm can potentially be used for synthesizing a correct
implementation of the final system.

TReMer consists of two main components: (1) A graph-
ical front-end allowing users to visually express their mod-
els, specify different relationships between these models,
and hypothesize and compute merges, and (2) A library of
merge algorithms. These algorithms communicate with the
front-end in a uniform way via an abstract interface for the
merge operation. The key idea that allows us to have such
an interface is the treatment of model relationships as first-
class artifacts. For details of our merge algorithms, refer to
[16, 17] and [14].

3 Examples of Model Merging
In this section, we illustrate our tool through concrete

examples. We use two views on the photo-taking function-
ality of a camera: Figure 2(a) shows a perspective where the
flash and non-flash (normal) shooting modes are not distin-
guished and the film-cartridge loading procedure is ignored.
Further, the perspective has a transition from Responsive to

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

(a) Without Flash

(b) With Flash

Figure 2. Two perspectives on a camera

Shooting meaning that the camera can take a photo even
without achieving focus. In the second perspective, Fig-
ure 2(b), flash and non-flash shooting are distinguished and
cartridge loading is modelled.

3.1 Structural Model Merging

We demonstrate structural merging over the state-
machines in Figure 2. In the first step, the user creates a
connector model, which includes just the overlaps between
Figures 2(a) and 2(b), and specifies how the connector maps
onto each of the two models. To describe a mapping be-
tween the connector and each model, the connector and the

model are shown side-by-side. An element correspondence
is established by first clicking on an element of the connec-
tor and then on an element of the model. Figure 3 (resp.
Figure 4) shows a mapping between the connector and the
model in Figure 2(a) (resp. Figure 2(b)). To show the de-
sired correspondences, we have added to the screenshots a
set of dotted lines indicating the related elements.

The second step is to compute the merge of the models
in Figure 2 with respect to their overlaps as described by the
connector. The result is shown in Figure 5.

Our structural merging approach has a number of fea-
tures, which we briefly discuss below. For more informa-
tion, consult [17]. Firstly, the approach can handle uncer-
tainties and disagreements in models – for simplicity, we
did not illustrate this feature here. Secondly, the approach
can be applied for merging more than two models at a time
– it works for any number of models with arbitrary inter-
connections between them. Thirdly, structural merging re-
sults in an abstraction if several elements of one model are
mapped to a single element of another. For example, Flash
Shooting and Normal Shooting in Figure 2(b) collapsed
into a single state in the merge (Figure 5) because both
states correspond to Shooting in Figure 2(a).

If such abstraction is undesirable, we need to refine our
assumptions about the relationships between the models.
Our structural merging approach provides the flexibility
to express relations other than exact correspondences, e.g.
specialization (isA), aggregation (hasA), and similarity (is-
SimilarTo). These relations may have no particular meaning
in the operational semantics of state-machines; neverthe-
less, they can play an important role in building conceptual
mappings between the contents of different models.

In our example, we can declare Flash Shooting and
Normal Shooting in Figure 2(b) to be specializations of
Shooting in Figure 2(a). To do this, we remove Flash
Shooting and Normal Shooting from the shared connector,

Shooting

Normal
Shooting

Flash
Shooting

and describe the specialization
relations in a helper model like
the one shown at right. We then
incorporate this new model into
the merge by describing how it
overlaps with each of the mod-
els in Figures 2(a) and 2(b).
That is, we map Shooting in
the helper model to Shooting in Figure 2(a), and similarly,
map Flash Shooting and Normal Shooting to the corre-
sponding states in Figure 2(b).

As illustrated above, helper models offer a mechanism
for bridging gaps between models that may be at different
levels of abstraction. Similar techniques are employed in
[13] and [12] for dealing with conceptual discontinuities be-
tween models.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Figure 3. Mapping between the connector and the model in Figure 2(a)

Figure 4. Mapping between the connector and the model in Figure 2(b)

Figure 5. Structural merge of the models in Figure 2

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Figure 6. Behavioural mapping between the models in Figure 2

3.2 Behavioural Model Merging

Behavioural merging of the state-machines in Figure 2
proceeds as follows: In the first step, the user defines a map-
ping between the states of the input models. This is done
in a similar manner to the structural approach. However,
in contrast to the structural approach, a correspondence be-
tween two states is not interpreted as a declaration of them
being equal, but rather, as a prescription for combining their
behaviours in the merge. Such interpretation of correspon-
dences makes it possible to establish direct mappings be-
tween models at different levels of abstraction.

Figure 6 shows a behavioural mapping between the in-
put state-machines. Note that behavioural mappings do not
need to relate transitions because, under bisimilarity seman-
tics, parallel transitions with the same label between a pair
of states can be replaced by a single transition.

The next step is to compute the merge with respect to the
mapping defined above. The result is shown in Figure 7.
As can be seen from the figure, non-shared behaviours are
guarded by conditions denoting the originating model that
exhibits those behaviours. Further, unlike structural merg-
ing, behavioural merging does not collapse distinct states.
For example, the Normal Shooting and Flash Shooting
states of Figure 2(b) remain intact in the merge (Figure 7)
although the two states are mapped to a single state of Fig-
ure 2(a). This is necessary for preserving the common be-
haviours of the input state-machines in their merge.

The merge preserves, in either guarded or unguarded
form, every behaviour of the input models. For example,
the property that “whenever focus is achieved, we can take
a picture” holds in both state-machines of Figure 2, and
as such, is incorporated as an unguarded behaviour in the
merge in Figure 7. However, the property that “we can take

Figure 7. Behavioural merge of the models in
Figure 2

a picture without achieving focus”, which holds only in the
model of Figure 2(a), is represented as a parametrized be-
haviour in the merge and can occur only when the guard
[in view1] holds. A change in the mapping between
the input models does not cause any behaviours to be added
to or removed from the merge, but may make some guarded
behaviours unguarded, or vice versa. The use of parameter-
ization for representing behavioural variabilities allows to
generate behaviour-preserving merges for models that may
even be inconsistent.

Behavioural merging can be used for merging more than
two models by iteratively merging a new input model with

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

the result of a previous merge, with one minor modification:
transition guards will range over subsets of input model in-
dices rather than individual model indices. For a fixed set
of mappings between the models, the order in which binary
merges are applied does not affect the final result.

4 Discussion and Future Work
The models used in this paper for illustrating model

merging were quite small, making it relatively easy to iden-
tify their relationships by hand. For large models, relation-
ships are often difficult to identify manually. This neces-
sitates the development of appropriate matching techniques
for finding correspondences between elements of different
models. Matching is a heuristic process; therefore, match-
ing results need to be reviewed by a domain expert and ad-
justed if necessary. In [14], we have developed a match
operator for behavioural models and are now extending our
work to structural models. We are also studying the inter-
actions between model merging and matching. Some initial
work in this direction has been reported in [6, 14].

Another important aspect of our future work is improv-
ing usability of our model merging tool. This allows us
to apply our framework to larger case-studies and to con-
duct an evaluation of its effectiveness. An evaluation of
our work will have to provide answers to the following
key questions: How much does our framework improve
time-to-completion of different model merging tasks? And,
how do merges generated by our framework compare with
manually-generated merges in terms of quality attributes
such as integrity and understandability?
Acknowledgments. We thank Zinovy Diskin and the
anonymous reviewers of the MiSE workshop for their in-
sightful comments. Financial support was provided by Bell
Canada (through the Bell University Labs), OGS, NSERC,
and an IBM Eclipse innovation grant.

References

[1] M. Abi-Antoun, J. Aldrich, N. Nahas, B. Schmerl, and
D. Garlan. Differencing and merging of architectural views.
In 21st International Conference on Automated Software
Engineering (ASE’06), pages 47–58, 2006.

[2] M. Alanen and I. Porres. Difference and union of models. In
6th International Conference on The Unified Modeling Lan-
guage, Modeling Languages and Applications (UML’03),
pages 2–17, 2003.

[3] M. Barr and C. Wells. Category Theory for Computing Sci-
ence. CRM, Montréal, Canada, 1999.

[4] C. Batini, M. Lenzerini, and S. Navathe. A comparative
analysis of methodologies for database schema integration.
ACM Computing Surveys, 18(4):323–364, 1986.

[5] P. Bernstein, A. Halevy, and R. Pottinger. A vision of man-
agement of complex models. SIGMOD Record, 29(4):55–
63, 2000.

[6] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu,
and M. Sabetzadeh. A manifesto for model merging. In
Proceedings of the 1st International Workshop on Global
Integrated Model Management, pages 5–12, 2006.

[7] Z. Diskin, J. Dingel, and H. Liang. Scenario integra-
tion via higher-order graphs. Technical Report TR-2006-
517, School of Computing, Queen’s University, Kingston,
Canada, 2006.

[8] S. Easterbrook and B. Nuseibeh. Using viewpoints for in-
consistency management. Software Engineering Journal,
11(1):31–43, 1996.

[9] A. Egyed. Heterogeneous View Integration and its Automa-
tion. PhD thesis, University of Southern California, Los An-
geles, USA, 2000.

[10] A. Finkelsetin, J. Kramer, B. Nuseibeh, L. Finkelstein, and
M. Goedicke. Viewpoints: A framework for integrating
multiple perspectives in system development. International
Journal of Software Engineering and Knowledge Engineer-
ing, 2(1):31–58, 1992.

[11] Y. Kalfoglou and M. Schorlemmer. Ontology mapping: The
state of the art. In Semantic Interoperability and Integration,
number 04391 in Dagstuhl Seminars, 2005.

[12] J. Madhavan, P. Bernstein, P. Domingos, and A. Halevy.
Representing and reasoning about mappings between do-
main models. In 18th National Conference on Artificial In-
telligence, pages 80–86, 2002.

[13] N. Medvidovic et al. Software model connectors: Bridging
models across the software lifecycle. In 13th International
Conference on Software Engineering and Knowledge Engi-
neering, pages 387–396, 2001.

[14] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and
P. Zave. Matching and merging of statecharts specifications.
In 29th International Conference on Software Engineering
(ICSE’07), 2007. To Appear.

[15] D. Richards. Merging individual conceptual models of re-
quirements. Requirements Engineering Journal, 8(4):195–
205, 2003.

[16] M. Sabetzadeh and S. Easterbrook. Analysis of inconsis-
tency in graph-based viewpoints: A category-theoretic ap-
proach. In 18th International Conference on Automated
Software Engineering (ASE’03), pages 12–21, 2003.

[17] M. Sabetzadeh and S. Easterbrook. View merging in the
presence of incompleteness and inconsistency. Require-
ments Engineering Journal, 11(3):174–193, 2006.

[18] M. Sabetzadeh and S. Nejati. TReMer: A tool for
relationship-driven model merging. In 14th International
Symposium on Formal Methods (FM’06), 2006. Tool
Demonstration.

[19] S. Uchitel and M. Chechik. Merging partial behavioural
models. In 12th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, pages 43–52,
2004.

[20] J. Whittle and J. Schumann. Generating statechart designs
from scenarios. In 22nd International Conference on Soft-
ware Engineering (ICSE’00), pages 314–323, 2000.

[21] A. Zito, Z. Diskin, and J. Dingel. Package merge in uml
2: Practice vs. theory? In 9th International Conference on
Model Driven Engineering Languages and Systems (MoD-
ELS’06), pages 185–199, 2006.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

