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How we Develop Software 
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What is Model-Based 

Development? 
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Model-Based Development 

Tools 
 Esterel Studio and 

SCADE Studio from 

Esterel Technologies 

 Rhapsody from I-Logix 

 Simulink and Stateflow 

from Mathworks Inc. 

 Rose Real-Time from 

Rational 

 I will focus on 

Statecharts and 

Dataflow notations. 
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System 
Specification/Model 

How we Will Develop Software 

(in theory) 
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Model-Based Development 

Examples 
Company Product Tools Specified & Autocoded Benefits Claimed 

Airbus A340 SCADE 
With Code 
Generator 

 70% Fly-by-wire Controls  

 70% Automatic Flight Controls  

 50% Display Computer  

 40% Warning & Maint Computer  

 20X Reduction in Errors  

 Reduced Time to Market 

Eurocopter EC-155/135 
Autopilot 

SCADE 
With Code 
Generator 

 90 % of Autopilot  
  

 50% Reduction in Cycle Time 

GE & 
Lockheed 
Martin 

FADEDC Engine 
Controls 

ADI Beacon  Not Stated  
  

 Reduction in Errors  

 50% Reduction in Cycle Time 

 Decreased Cost 

Schneider 
Electric 

Nuclear Power 
Plant Safety 
Control 

SCADE 
With Code 
Generator 

 200,000 SLOC Auto Generated 
from 1,200 Design Views 

  

 8X Reduction in Errors while 
Complexity Increased 4x 

 

US 
Spaceware 

DCX Rocket MATRIXx  Not Stated  
  

 50-75% Reduction in Cost  

 Reduced Schedule & Risk 

PSA Electrical 
Management 
System 

SCADE 
With Code 
Generator 

 50% SLOC Auto Generated  60% Reduction in Cycle Time 

 5X Reduction in Errors 

CSEE 
Transport 

Subway 
Signaling System 

SCADE 
With Code 
Generator 

 80,000 C SLOC Auto Generated  Improved Productivity from 
20 to 300 SLOC/day 

Honeywell 
Commercial 
Aviation 
Systems 

Primus Epic 
Flight Control 
System 

MATLAB 
Simulink 

 60% Automatic Flight Controls  5X Increase in Productivity 

 No Coding Errors 

 Received FAA Certification 
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Does Model-Based Development  

Scale? 

Systems Developed Using 

MBD 

 Flight Control 

 Auto Pilot 

 Fight Warning 

 Cockpit Display 

 Fuel Management 

 Landing Gear 

 Braking 

 Steering 

 Anti-Icing 

 Electrical Load Management 
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Airbus A380 

Length    239 ft 6 in 

Wingspan   261 ft 10 in 

Maximum Takeoff Weight  1,235,000 lbs 

Passengers  Up to 840  

Range   9,383 miles 

Slide courtesy of Steve Miller in “Proving the Shalls”  © 2006 Rockwell Collins, Inc. All rights reserved. 



…But it is not all roses 

 Many MBD projects fail to meet their 

original goals of cost, productivity 

◦ These tend not to get as much publicity! 

 Clear eyed understanding of why you 

model and what you expect is necessary 
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A Personal Anecdote 

 Part of two large projects using Model-
Based Development 
◦ Same company, similar quality developers 

◦ One great success 
 Significant cost reductions 

 Improvement in quality 

 Excellent customer satisfaction 

◦ One great failure 
 Large cost overruns 

 Models considered less  
useful than code 

 Group abandoned MBD 
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What are your models for? 

 Possible to use MBD for many different purposes: 

 Requirements  

 Design 

 Simulation  

 Visualization 

 Testing 

◦ Test Generation 

◦ Test Oracle 

 Formal Verification 

 Code Generation 

◦ Complete implementation 

◦ Code skeleton  

 Prototyping 

 Communication with Customer 
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You must understand, up 

front, what you expect to 

do with models in order 

to successfully adopt 

MBD. 
Major opportunity for 

improvement in V&V 



MBD Models as 

Requirements 
 Are MBD models requirements? 

 

 

 

 

 

 Notations in this talk are executable; 

good at describing how system works 
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 Lots of design detail 

 Difficult to see “full system” behavior. 

 Straightforward to generate code 
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The Most Important Issue for 

Successful Adoption of MBD 

 Block diagrams are very natural for control 

problems 

 Statecharts are very natural for description of 

system modes & mode transitions 

 Both block diagrams and statecharts are very 

unnatural for representing complex data structures 

 Neither notation naturally supports iteration or 

recursion 

◦ It can be “faked”, but not well 
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Do the Domain-Specific Notations provide 

a natural representation for your problem? 



Just…No… 
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Stateflow model of 

Tetris game (included 

in the Stateflow 

Demo models from 

the Mathworks!).   

 

Diagram is 

essentially a control-

flow graph of a 

program that 

implements tetris. 

 

*Much* harder to 

read and modify than 

an equivalent 

program. 

Model © The Mathworks, 2007 



Tools Matter 

 Often notations are much more 

cumbersome to use than text 

◦ No diff / merge capabilities 

◦ Adding information requires many clicks 

 Expressible != Easy 

 Anecdote: Simulink vs. SCADE at Rockwell 

Collins in 2006 

◦ SCADE had formal pedigree, strong analysis  

 But tools kept crashing on our Windows boxes 

◦ Simulink had better tools and better salespeople 
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Analysis Pyramid 
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What We Need 
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MBD Is a V&V-Enabling 

Technology 

 Strong simulation and analysis capabilities 

built into most tools   

◦ Demo: Stateflow Elevator  
 (Help: Stateflow/Demos/Large-Scale Modeling/Modeling an 

Elevator System) 

 Even stronger simulation capabilities in external 

tools 

◦ Demo: Reactis step simulation with Microwave 

 Allows  straightforward “Build a little, test a little” 

philosophy 

◦ Consistent with incremental development 

philosophy 
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Model-Driven Test Generation 

(v1) 
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Source Code 

Generated 

Tests 

while(a<0) { 

  a=a-1; 

  b=b*a;  

} 

printf(“%d”,  

  b); 

Test Case  

Generator 

Compiler 

Coverage  

Metric 

Object Code 

? 
Possible to generate 

test suites that satisfy 

very rigorous structural 

coverage metrics 

MBD Model 

Model results must 

match source code 

for tests to pass 



Model-Driven Test Generation 

(v2) 
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Model-Driven Test Generation 

(v2) 
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MBD Model 

Generated 

Tests 

Test Case  

Generator 

Code Generator 

+ Compiler 

Coverage  

Metric 

Object Code 

Model should match 

source code exactly 

Oracle 

Where does Oracle 

come from? 

What is a good 

oracle? 



Use Requirements as Oracle 
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Static Analysis and Model 

Checking 
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Analysis Tool 

Oracle 

Property 

True 

Property False: 

Test Case 

MBD Model 



FCS 5000 Flight Control Mode 

Logic 
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6.8 x 1021 Reachable States 

Mode Controller B 

Mode Controller A 

Counterexample Found in 

Less than Two Minutes 

Found 27 Errors 

Example Requirement 

Mode A1 => Mode B1 

Modeled in Simulink 

Translated to NuSMV 

Slide © Rockwell Collins, 2008 



ADGS 2100 Adaptive Display 

and Guidance System  
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Example Requirement: 

Drive the Maximum Number of Display Units  

Given the Available Graphics Processors  

Counterexample Found in 5 Seconds 

Checked 573 Properties - 

Found and Corrected 98 Errors 

in Early Design Models 

Modeled in Simulink 

Translated to NuSMV 

4,295 Subsystems 

16,117 Simulink Blocks 

Over 1037 Reachable States 

Slide © Rockwell Collins, 2008 



CerTA FCS Phase I 

 Sponsored by AFRL 

◦ Wright Patterson VA 

Directorate 

 Compare FM & 

Testing 

◦ Testing team & FM team 

 Lockheed Martin UAV  

◦ Adaptive Flight Control 

System 

◦ Redundancy 

Management Logic 

◦ Modeled in Simulink 

◦ Translated to NuSMV 

model checker  
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Testing 

Model-Checking 12 40% 

0 60% 
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Effort 
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MBD Formal Analysis Efforts 
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Problem 1: 

Using Models Where They Don’t Fit 

If MBD notation doesn’t provide 

a better representation of your 

problem than code, you’re 

wasting your time.  
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MBD notations can 

be awful 

programming 

languages… 

Model © The Mathworks, 2007 



Remedies 

 Perform honest assessment of where 
MBD notations can be used 
◦ They do not do everything 

◦ Recursive data structures are especially 
difficult to model. 

◦ Use models where they are a good 
representation. 

 Create a partitioning strategy between 
models and code for applications that 
contain both complex mode logic and 
complex data. 
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Problem 2 

Believing Testing Can be 

Eliminated 

Testing will always be a crucial 

(and costly) component 
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System 
Specification/Model 

Testing Does not go Away 
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System 
Specification/Model 

It Simply Moves 
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System 
Specification/Model 

Do it the Right Way 

5/27/2013 Why We Model - Mike Whalen 40 

Concept 

Formation 

Requirements 

Implementation 

Integration 

Properties Analysi

s 

Integration 

Test 

System 

Test 

Specificatio

n Test 

Unit Test 



Problem 3 

Believing the Model is 

Everything 

The model is never enough 
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Modeling is 

so much 

fun 

Properties 

Specification/Model 

Modeling Frenzy 
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Concept 

Formation 

Requirements 

Implementation 

Integration 

How do we 

know the 

model is 

“right”? 

System Test 



Remedies 

 Recognize the Role of Software 
Requirements 
◦ The model is not everything 

 Development Methods for Model-Based 
Development Badly Needed 
◦ Model-Based Software Development Process 

 Develop Tools and Techniques for Model, 
Properties, and Requirements Management 

 Develop Inspection Checklists and Style 
Guidelines for Models 
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Problem 4 

Trusting Verification 

To really mess things up, 

you need formal verification 
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Property or Model: Who is Right? 
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AG(Onside_FD_On -> Mode_Annunciations_On) 

The Mode Annunciations shall be turned on 
when the Flight Director is turned on 

AG( (Is_This_Side_Active & Onside_FD_On)  
              -> Mode_Annunciations_On) 

If this side is active, the Mode Annunciations shall  
be turned on when the Flight Director is turned on 

If this side is active and the Mode Annunciations are off, the 
Mode Annunciations shall be turned on when the Flight Director 
is turned on 

AG( ! Mode_Annunciations_On -> 
       AX ((Is_This_Side_Active & Onside_FD_On)  
                  -> Mode_Annunciations_On))) 



Remedies 
 Develop techniques to determine adequacy of model 

and property set 
◦ How do we know they are any “good” 

 Techniques for management of invariants 
◦ How do we validate the assumptions we make 

 Methodology and guidance badly needed  
◦ Tools with training wheels 

◦ “Verification for Dummies” 

 

All we need is one high-profile verified 
system 

to fail spectacularly to set us back 
a decade or more 
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Conclusions 

 MBD can significantly improve developer productivity, 

cost, schedule, and quality 

 …or it can make your life miserable 

 The important thing is to know why you’re doing it! 

◦ Know the limitations of what can be modeled using the DSNs 

◦ Know which capabilities you hope to use 

 Design and quality of models depends on this 

 V & V receives the largest benefit of the MBD 

approach 

◦ Mature tools for test-case generation 

◦ Starting to see model checking built into commercial tools: 

SCADE Verifier, Simulink Design Verifier 

 There are many other things to discuss!  Versioning, 

diff, semantics, tool costs, training, structuring, vendor 

“lock in” 
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Questions? 
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Medical Cyber-Physical Systems 

Research directions: 

• Medical device interoperability 

• High-confidence development 
– Model-driven design 

– V&V, regulatory approval 

Participants 

• University of Pennsylvania 

• U. Penn Hospital System 

• University of Minnesota 

• CIMIT/MGH 

Improving patient treatment by coordinated systems of medical devices 
• Smart alarms and decision support 

• Physiological closed-loop control 
  

Supported by NSF  CNS-1035715 

http://rtg.cis.upenn.edu/MDCPS/    

Networked Blood Glucose Control System 

Safety-critical, closed-loop MCPS 
Research issues: 
• Identifying new risks and  

hazards 
• Mitigation strategies 
• Validation 
• Control design 
Pursue model-driven approach 

Smart alarm systems 

Model driven development and assurance cases Coordination framework for medical  devices 
• Build high-confidence middleware 

– Rely on formal methods and static analysis 
• Design a language for executable  

clinical scenarios 
– Specify information flows 
– Identify timing constraints 
– Ensure non-interference 

• Reduction of irrelevant alarms for CABG patients 
– Based on aggregation of  

multiple vital signs and  
fuzzy logic 

• On-going research: 
– Prediction of vasospasm  

in neuro-ICU patients 

High-assurance development: 
• Modeling, code synthesis 
• Model-level verification,  

code-level validation 

Assurance case construction 
reflects development process 
structure 
Applied to pacemaker, PCA pump 
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