
May 2008 - 1University of Ottawa – Andrew Forward

Panel: Obstacles to MDE Adoption

CRuiSE: Complexity Reduction in Software
Engineering

May 2008

Professor: Dr. Timothy C. Lethbridge
Students: Andrew Forward, Dusan Brestovansky, Omar Bahy

IBM Ottawa Collaborator: Marcellus Mindel

University of Ottawa

May 2008 - 2University of Ottawa – Andrew Forward

Some key objectives of the CRuiSE group:

Better understand the roots of software system
complexity

– From the perspective of all stakeholders
• Software engineers, users, configurers, etc.

– What actions and activities drive complexity?

Better understand the successes and failures of
existing tools, when it comes to complexity reduction

– E.g. Modelling in general, UML, BPEL

May 2008 - 3University of Ottawa – Andrew Forward

Levels of MDE

Model-only: Approaches where the model is effectively all there is,
except for small amounts of code.

Model-centric: Approaches where modeling is performed first, and
code is generated from the model, for possible subsequent manual
manipulation.

Model-as-design-aid: Approaches where modeling is done for
design purposes, but then code is written mostly by hand.

Model-as-documentation: Approaches where modeling is done to
outline or describe the system, largely after the code is written.

Code-only: Approaches where modeling is almost entirely absent.

May 2008 - 4University of Ottawa – Andrew Forward

Goals of MDE

Balancing between creating good software now, with
enabling future development of good software

In particular to MDE
Enable as much development at modelling level

– Without need to edit generated code
Enable more rigorous engineering at modelling level

– analysis, testing, verification

Achieved relatively soon, but late adopters might take
20 or more years

May 2008 - 5University of Ottawa – Andrew Forward

Current State of the Art

A lot of emphasis on artifacts that are great at
communicating design and intent

– Must also consider how design is written
– Tools lacking efficient process to create, edit and

maintain software models

Tools are big and clunky
– We need big tools for big projects
– We ALSO need small tools for small projects

May 2008 - 6University of Ottawa – Andrew Forward

Benefits / Drawbacks to MDE

Main Benefit
Documentation / Communication

– Visually document your design / intent for free
– System is built visually from the beginning

Main Drawback
Training

– Not only is modelling a skill, but the tools require
significant investment of training

Other Drawbacks
Inefficient programming, tool specific dependency,

adoption, difficulty (still) capturing business logic

May 2008 - 7University of Ottawa – Andrew Forward

Why (or why not) MDE

Biggest Obstacle
Must be efficient for software developers to build

software systems (create, edit, maintain, debug)

Best Reason to MDE
Allows higher order constructs (i.e. more abstract 1st

class constructs)

Best Reason NOT to
Tool support (limited, vendor specific, interoperability

issues)

May 2008 - 8University of Ottawa – Andrew Forward

Empirical Study: Attitudes to Modelling

Objective: Understand how software engineers think
about modelling, and do modelling so we can
develop better tools

Asking various questions such as:
– What is a model?
– How do you create / modify software models
– How do you learn about the design of software
– What modelling notations do you use?

May 2008 - 9University of Ottawa – Andrew Forward

References for more information

Andrew Forward’s PhD Homepage
http://www.site.uottawa.ca/~tcl/gradtheses/aforwardphd/

http://www.site.uottawa.ca/~tcl/gradtheses/aforwardphd/

May 2008 - 10University of Ottawa – Andrew Forward

Empirical Study: Overview

April – December 2007
113 Participants
18 questions

Demographics
14 years of SE experience
2/3 from Canada and United States
Other regions include United Kingdom, Europe, India,

Pakistan, Australia, Mexico and Singapore
44% had a Masters degree

May 2008 - 11University of Ottawa – Andrew Forward

Key Findings: Creating Vs Consuming Models

Creating Models
White board, diagramming tools, word-processors

Consuming Models
Word-of-mouth, word-processors, diagramming tools

Special Notes
Least important source of information: fully

integrated modeling tools and hand-written material

May 2008 - 12University of Ottawa – Andrew Forward

Key Findings: Use of modelling tools

Top Uses
Develop the design of software
Transcribe a design into a digital format

Bottom Uses
Code generation
Brainstorming design alternatives (whiteboards still

superior?)

May 2008 - 13University of Ottawa – Andrew Forward

Key Finding: Code versus Model-Centric

Responses for Question 14: Tasks that are better in a model-centric versus code-centric approach.

Available activities % Much easier in
Models (1)

% Easier in Models
(1 + 2)

% Easier in Code
(4 + 5)

% Much easier in
Code (5)

Fixing a bug 21.1 28.9 43.3 25.6

Creating efficient software 16.3 35.9 43.5 21.7

Creating a system as quickly as possible 23.9 46.7 42.4 23.9

Creating a prototype 26.7 43.0 32.6 22.8

Creating a usable system for end users 26.1 42.4 22.8 10.9

Modifying a system when requirements
change

34.1 54.9 24.2 13.2

Creating a system that most accurately
meets requirements

42.9 67.0 19.8 8.8

Creating a re-usable system 44.6 63.0 15.2 9.8

Creating a new system overall 43.5 68.5 20.7 7.6

Comprehending a system's behavior 51.7 71.9 15.7 5.6

Explaining a system to others 61.1 81.8 7.6 6.5

Note. Values range from Much easier in a model-centric approach (1), to much easier in a code-centric approach (5).

May 2008 - 14University of Ottawa – Andrew Forward

Key Findings: Problems with Model-Centric
Responses for Question 15: Problems with a model-centric approach.

Potential problems % Strongly
Disagree (1)

% Disagree (1
+ 2)

% Agree
(4 + 5)

% Strongly Agree
(5)

Models become out of date and inconsistent with code 7.6 16.3 68.5 37.0

Models cannot be easily exchanged between tools 15.4 26.4 51.6 17.6

Modeling tools are 'heavyweight' (to install, learn, configure, use) 10.9 31.5 39.1 12.0

Code generated from a modeling tool not of the kind I would like 18.7 39.6 38.5 16.5

You cannot describe the kinds of details that need to be implemented 23.6 43.8 36.0 7.9

Creating and editing a model is slow 17.4 43.5 22.8 12.0

Modeling tools change, models become obsolete 22.8 44.6 32.6 5.4

Modeling tools lack features I need or want 19.1 44.9 21.3 5.6

Modeling tools hide too many details that are visible in the source code 19.6 44.6 23.9 1.1

Modeling tools are too expensive 26.7 46.7 26.7 6.7

Modeling tools do not allow be to analyze my design in ways I would want 28.9 51.1 25.6 6.7

Organization culture does not like modeling 31.5 48.9 23.9 4.3

Semantics of models different from underling prog. languages 31.1 56.7 23.3 8.9

Modeling languages are not expressive enough 28.6 54.9 17.6 2.2

Modeling language hard to understand 28.6 62.6 9.9 3.3

Have had bad experiences with modeling 39.6 63.7 16.5 6.6

Do not trust companies will continue to support their tools 44.9 67.4 10.1 0.0

Note. Values range from Not a problem (1), to Terrible problem (5).

May 2008 - 15University of Ottawa – Andrew Forward

Key Findings: Problems with Code-Centric

Responses for Question 16: Problems with a code-centric approach.

Potential problems % Strongly
Disagree (1)

%
Disagree
(1 + 2)

%
Agree
(4 + 5)

% Strongly. Agree (5)

Hard to see overall design 4.3 13.8 66.0 35.1

Hard to understand behavior of system 4.3 19.1 60.6 21.3

Code becomes of poorer quality over time 9.8 28.3 55.4 25.0

Too difficult to restructure system when needed 8.6 22.6 51.6 17.2

Difficult to change code without adding bugs 9.7 22.6 50.5 18.3

Changing code takes too much time 20.2 39.4 27.7 8.5

Our programming language leads to complex code 26.6 51.1 20.2 8.5

More skill is required than is available to develop high
quality code

29.7 53.8 22.0 6.6

Programming languages are not expressive enough 46.2 64.8 14.3 5.5

Organization culture does not like the code-centric approach 58.7 72.8 14.1 4.3

Our programming language is likely to become obsolete 51.6 75.3 9.7 3.2

Note. Values range from Not a problem (1) to Terrible problem (5).

	Panel: Obstacles to MDE AdoptionCRuiSE: Complexity Reduction in Software Engineering
	Some key objectives of the CRuiSE group:
	Levels of MDE
	Goals of MDE
	Current State of the Art
	Benefits / Drawbacks to MDE
	Why (or why not) MDE
	Empirical Study: Attitudes to Modelling
	References for more information
	Empirical Study: Overview
	Key Findings: Creating Vs Consuming Models
	Key Findings: Use of modelling tools
	Key Finding: Code versus Model-Centric
	Key Findings: Problems with Model-Centric
	Key Findings: Problems with Code-Centric

