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Abstract

Increasingly, software must adapt its behavior in re-
sponse to changes in the supporting computing, communi-
cation infrastructure, and in the surrounding physical envi-
ronment. Since most existing software was not designed to
adapt, research on techniques to make legacy software dy-
namically adaptive has gained increasing interest. Assur-
ance is crucial for adaptive software to fulfill its intended
purpose. Correctness is even more critical if it is to be
applied in high assurance systems. This paper proposes
a model-driven approach to introduce dynamic adaptation
to non-adaptive legacy systems while maintaining assur-
ance properties. An aspect-oriented technique is applied
to achieve separation of concerns in the implementation.

1 Introduction

Increasingly, software must adapt its behavior in re-
sponse to changes in the supporting computing, communi-
cation infrastructure, and in the surrounding physical en-
vironment [1]. Since most existing software was not de-
signed to adapt, research on techniques to make legacy soft-
ware dynamically adaptive has gained increasing interest.
Assurance is crucial for adaptive software to fulfill its in-
tended purpose, namely hardening security, upgrading ser-
vices, etc. Correctness is even more critical if the software
is to be applied in high assurance systems, such as com-
mand and control, critical infrastructure protection systems,
etc. In these systems, adaptive software development must
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be grounded upon formalism and rigorous software engi-
neering methodology, which provide high assurance in soft-
ware. In this paper, we propose a technique to re-engineer
legacy software systems in order to make them dynamically
adaptive with an emphasis on the assurance of adaptation.

In recent years, two main areas of research for dynam-
ically adaptive software have been pursued. First, tech-
niques have been proposed for various software system lay-
ers to enable dynamic adaptation in previously non-adaptive
software (e.g., transparent shaping [2], Aura [3]). Sec-
ond, many researchers have investigated assurance issues
for adaptive systems [4], such as the modeling and analy-
sis of abstract behavioral models and architectures. There
is a gap between these two research thrusts for adaptive
systems: On the one hand, techniques addressing adapta-
tion in legacy code heavily rely on developers’ experience
and common sense rather than leveraging rigorous verifi-
cation techniques, such as model checking. On the other
hand, techniques addressing correctness in dynamic adap-
tation using rigorous software engineering techniques focus
on abstract models and do not take the models to their im-
plementations.

This paper proposes a model-driven, aspect-oriented ap-
proach to introduce dynamic adaptation to legacy systems,
while maintaining assurance properties. Our key insight is
that UML models, with formally defined semantics, can be
used as an intermediate representation to bridge the gap be-
tween the formal models used for adaptive software verifi-
cation and adaptive software implementations. Adaptation
designs can be performed on the UML models by creating
adaptation UML models that can be automatically trans-
lated into formal models using existing tools [5] for formal
analysis. We introduce a cascade adaptation mechanism for
implementing adaptation designs in the programming lan-
guage for the legacy code. An aspect-oriented technique is
applied to the source code of the system to achieve separa-
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tion of concerns in the implementation.
Our proposed approach has the following characteris-

tics. (1) The approach handles existing non-adaptive legacy
code, as well as new adaptive programs. (2)The ap-
proach provides assurance to the adaptive program as a pre-
requisite for the program to be used in critical systems. (3)
The code for adaptation is separated from the non-adaptive
legacy code. The approach is non-invasive to the original
legacy source code, i.e., the source code for the system is
not altered directly. Non-invasiveness to the source code
is important in order to allow the adaptation code and the
legacy code to be maintained separately. (4) The points for
adaptation are flexible. Many adaptation techniques [6, 2, 7]
require the points for adaptation to be separated from the
code segment changed by the adaptation. We find that this
constraint may impose unacceptable performance penalties
in some adaptation scenarios. Thus, we designed our ap-
proach to be more flexible, i.e., allowing adaptation to oc-
cur at any identifiable point in the program. (5) The mod-
eling technique is capable of expressing the transformation
of state information from the source program (i.e. the pro-
gram from which the system adapts) to the target program
(i.e. the program to which the system should adapt).

We have applied our approach to adaptive mobile com-
puting applications, including the development of an adap-
tive Java pipeline program [8]. Two non-adaptive versions
of this program had been previously developed in our lab.
However, the development of the adaptive version of the
program had been a daunting task because of the algorith-
mic complexity involved. Our approach reduced develop-
ers’ burden by separating different concerns and using au-
tomated formal analysis tools. The remainder of this pa-
per is organized as follows. Section 2 gives background
on earlier work for an aspect-oriented adaptation enabling
technique [6], a model-based adaptive software develop-
ment process [9], and a metamodel-based UML formaliza-
tion technique [5]. In Section 3, we overview our approach.
Section 4 concludes this paper and briefly discusses our fu-
ture directions.

2 Background

In this section, we overview three techniques that will be
extensively leveraged for our proposed approach.

2.1 Aspect-Oriented Adaptation

Yang et al [6] previously developed a two-phased AOP-
based technique to enable adaptation in legacy software us-
ing AspectJ. In the first phase, occurring at compile time,
an aspect fragment, called behavior adaptor, defines the
points in a legacy program at which “traps” need to be in-
serted. An AOP compiler, such as the AspectJ compiler,

weaves the behavior adaptor into the legacy code to make
the legacy code “adapt-ready”, i.e., capable of changing be-
havior. During the second phase, at runtime, an adapta-
tion kernel, i.e., a loose federation of concern-specific adap-
tation managers, checks execution conditions of the soft-
ware and performs appropriate adaptive actions according
to a dynamically reloadable rule base. By using AOP tech-
niques, their approach fully separates the application code
(non-adaptive) from the dynamic adaptation concerns.

2.2 MASD: Model-Based Adaptation

A number of techniques (e.g. process algebra-based ap-
proaches) [10, 11, 12] focus on verifying that an adaptive
program is correct in terms of satisfying a given set of
properties. We recently proposed a top-down, model-based
adaptive software development process (MASD) [9] to pro-
vide assurance in adaptive software. In this process, we start
from the high-level goal for the adaptive software. By ap-
plying goal-driven requirements analysis [13, 14], we derive
a set of execution domains and the local properties for each
domain, and a set of global invariants. The local properties
for a domain are the properties the adaptive software must
exhibit while executing in the domain. Global invariants are
the properties the adaptive software must satisfy through-
out its execution. We create a formal Petri net model for
each domain and verify the model against the local prop-
erties for the domain. For each adaptation from a source
model to a target model, we create intermediate states and
transitions connecting the source model to the target model.
The quiescent states for adaptation (the states from which
the adaptation may start) are identified by the transitions
emitting from the source model. The source model, the
target model, and the adaptive states and transitions form
an adaptation model. The adaptation Petri net models are
then verified against global invariants. Finally, the Petri net
models are leveraged in the generation of rapid prototypes
and in model-based testing. The MASD technique focuses
on the development of new adaptive software, rather than
legacy code. The support for generating executable code is
only for the requirements level (as prototypes), instead of
the production-level code.

2.3 UML Formalization Technique

McUmber and Cheng developed a general framework [5]
based on mappings between metamodels (class diagrams
depicting abstract syntax) for formalizing a subset of UML
diagrams in terms of different formal languages, including
Promela [5]. The formal (target) language chosen should
reflect and support the intended semantics for a given do-
main (e.g., mobile computing systems). This formaliza-
tion framework enables the construction of a set of rules
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for transforming UML models into specifications in a for-
mal language. The resulting specifications derived from
UML diagrams enable either execution through simulation
or analysis through model checking, using existing tools.
The mapping process from UML to a target language has
been automated in a tool called Hydra [5]. We use Hydra
to enable the formal analysis of the UML diagrams created
for the adaptive systems. We also use the Hydra framework
as the basis for reverse engineering Java programs to obtain
behavioral models.

3 Bridging the Gap

In this paper we show how the aspect-oriented adapta-
tion enabling technique [6], the MASD process, and the
metamodel- based formalization technique can be inte-
grated and leveraged to bridge the gap between formal mod-
els for adaptive systems and adaptation implementations.
Although our discussion focuses on legacy code, we also
show how our approach, with minor changes, can be ap-
plied to newly developed code as well.

Our approach addresses three phases in the development
of adaptive software: the requirements analysis phase, the
model design and analysis phase, and the implementation
phase. As shown in Figure 1, the overall process includes
the following four steps: Step (1) occurs in the require-
ments analysis phase. We perform requirements analysis to
select a set of non-adaptive legacy programs P1, P2, · · ·Pk

(each of which differs from others by one or more segments
of code), and a set of properties that must be satisfied by
the programs. We specify two types of properties: Local
properties specify what must be satisfied by each legacy
program individually. Global invariants specify proper-
ties must be satisfied by the adaptive program throughout
its execution, regardless of adaptations. Step (2) occurs in
the model design and analysis phase. The programs are
translated into UML Statechart diagrams M1,M2, · · ·Mk,
(named steady-state models). These models will be trans-
lated into formal models and verified against their local
properties using automated tools [5]. Step (3) also occurs
in the model design and analysis phase. After the steady-
state models are verified, developers must create an adapta-
tion model Ai,j , also in terms of UML Statechart diagrams,
for each adaptation from program Pi to Pj . The adaptation
models are then translated to formal models and verified us-
ing formal analysis tools against global invariants. Step (4)
occurs in the implementation phase. After the adaptation
models are verified, they are then integrated and translated
into adaptive programs. Our approach addresses the follow-
ing questions in this step: What mechanism do we use to
make legacy code adaptive? Where and what code should
be inserted in the legacy code so that the implementation
faithfully reflects the adaptation design?
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Figure 1. The dataflow diagram for the pro-
posed approach

We next describe each phase in more detail. For discus-
sion purposes, we focus on the adaptation of one adaptive
component from one source behavior to one target behav-
ior. Due to space constraints, we omit the description of this
technique extended to support collaborative adaptation [15].

3.1 Adaptation Requirements Analysis

We use a goal-based approach [16, 13] to analyze the re-
quirements for adaptive software [9]. As shown in Figure 2,
an adaptive program is intended to achieve a high-level goal
under different run-time environmental conditions. We first
determine the set of environmental conditions (formally de-
fined as domains) D1, D2, · · ·Dk, in which the adaptive
program is required to execute. The requirements for these
domains R1, R2, · · ·Rk, respectively, are those properties
that enable the software to achieve the high-level goal in
the corresponding domains. We specify two types of re-
quirements: global invariants and local properties. Global
invariants usually specify those properties common to all
the domains and need to be preserved throughout the exe-
cution of the program. Local properties are those specific
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to each execution domain. In order to facilitate formal veri-
fication of the requirements, we express these requirements
in Linear Temporal Logic (LTL). Assume that we have a
legacy code base comprising a set of non-adaptive legacy
programs and the properties associated with each program.
After the set of requirements are specified, we query the
code base using the local properties and select the set of
non-adaptive legacy programs P1, P2, · · ·Pk to be used in
the domains D1, D2, · · ·Dk, respectively. In this section,
we assume that the legacy code for all the requirements al-
ready exists.
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Figure 2. Goal model for adaptive software

Next, we analyze how the execution domains of the pro-
gram may change at run time, and how the adaptive pro-
gram should respond. Consider the case where the program
is initially running Pi in domain Di. A change of domain
from Di to Dj may warrant an adaptation from Pi to Pj

depending on the cost to develop such an adaptation and the
overhead that may be incurred during the adaptation.

3.2 Adaptation Design and Analysis

After selecting the set of legacy programs and adapta-
tions, we create adaptation models in UML using the fol-
lowing steps: First, we reverse engineer each legacy pro-
gram Pi to generate a UML model (Statechart diagram) Mi.
Second, we verify the Statechart diagram for each legacy
program against its local properties. Third, for each adap-
tation from Pi to Pj identified in the requirements analysis,
we design an adaption model, i.e., adaptive states and tran-
sitions from the source model Mi to the target mode Mj .
Finally, we translate the adaptation models into Promela
models to verify global invariants.

3.2.1 Generate state diagrams

We use a metamodel-based technique [5] to generate the
state-diagram model Mi for each legacy program Pi. This

technique had been previously proposed for formalizing a
subset of UML diagrams in terms of different formal lan-
guages, including Promela. It is also generally applicable
to formalizing the transformation of programs from one lan-
guage to another. In order to apply this technique, we first
define the metamodels for UML diagrams and for the legacy
code, Java in this case. Then we define the rules for the
translation from Java programs to UML models in terms of
the metamodels. After the rules are defined, the translation
from Java programs to UML models can then be performed
mechanically by a developer and can potentially be auto-
mated. We have developed rules for translating the subset
of Java that is relevant to our mobile computing and other
applications of study. Developing the rules for translating
the full Java language is non-trivial; ongoing investigations
are underway by other groups [17].

3.2.2 Verify local properties for assurance

Next, we analyze the UML design models against local
properties. We use the Hydra tool suite to transform the
UML models to Promela models. Then we use the Spin
model checker [18] to verify the Promela models against
the local properties specified in requirements analysis. Vi-
olations of local properties by the models may indicate one
or more of the following cases: (1) The legacy programs
are initially incorrect, (2) the UML models are not gener-
ated faithfully according to legacy programs, or (3) the local
properties are specified incorrectly. The corresponding er-
roneous artifacts must be revised until the models conform
to the properties.

3.2.3 Design adaptation models

After the UML models are generated, we design an adapta-
tion model for each required adaptation. Assume the pro-
gram is required to adapt from running Pi (the source) to
running Pj (the target), and the corresponding Statechart
diagrams are Mi and Mj , respectively. We create an adap-
tation Statechart model from Mi to Mj by adding adap-
tive states and transitions such that the global invariants are
preserved before, during, and after adaptation. We apply
the MASD process to Statechart diagrams by performing
the following tasks: (1) Identify the quiescent states in the
source model, i.e., the states from which the adaptation may
safely start; (2) identify the entry states in the target model,
i.e., the states in which the adaptation completes; (3) deter-
mine the state transformation from the quiescent states to
the entry states.

Previously [9], we argued that the adaptation model de-
sign is considered correct if and only if the model satisfies
the global invariants specified in the requirements analysis.
Although theoretically, the quiescent states and the entry
states can potentially be any states in the models, certain
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heuristics can be followed to keep the design clean and sim-
ple. First, since an adaptation can only start from a quies-
cent state, quiescent states must be on paths that the pro-
gram frequently executes,1 otherwise, there may be a long
delay before the adaptation may start. Second, the condi-
tions for the quiescent states must be kept simple. For ex-
ample the conditions at the entry point of a loop are usually
simpler than the conditions in the body of the loop. Exam-
ple conditions include loop invariants, pre/post conditions,
etc. Similarly, conditions for the entry states in the target
program need to be simple as well. However, the entry
states are not required to be on a frequently executed path.

The adaptive states and transitions usually include sav-
ing the states of the source model, transforming states of the
source model to states of the target model, and restoring the
states in the target model. The quiescent/entry states infor-
mation that needs to be saved/restored are usually the values
of those live variables, i.e., those that have been defined and
may be used before they are redefined in the model. A state
transformation defines a function from the set of variables in
the quiescent state to the set of variables in the entry states.
A necessary condition for a valid state transformation func-
tion is that the output must satisfy the conditions for the
entry states given that the input satisfies the conditions for
the quiescent states.

3.2.4 Verify global invariants for assurance

An adaptation model must be verified against the global in-
variants. The process is similar to that used for verifying
the local properties. Violations of the global invariants indi-
cate that the adaptation models or the global invariants are
incorrect. In either case, we must return to previous steps to
revise the corresponding artifacts until the global invariants
are satisfied by the model.

3.3 Implementation of Adaptive Software

After the adaptation model is constructed, we implement
the model in Java to enable the legacy code to be adaptive.
We assume that each non-adaptive legacy program Pi is ini-
tially encapsulated in a Java class. First we create an adap-
tive Java class such that the class implements the adaptive
behavior described by the adaptation model. Second, we
replace invocations to the constructors of the non-adaptive
classes in the legacy code with those of the adaptive class
using an aspect-oriented technique. The remainder of the
legacy program remains unchanged.

1The frequency may be monitored by instrumentation of the source
code.

3.3.1 Construct adaptive classes

We implement adaptive programs by systematically realiz-
ing the adaptation models. Since the UML models are ini-
tially generated from the programs, we assume the trace-
ability links between the UML models and the Java pro-
grams are already created by the generation process. We
identify the locations and conditions in the source (resp. tar-
get) program that correspond to the quiescent (resp. entry)
states in the adaptation model. At the locations correspond-
ing to the quiescent state, we insert code to test whether
an adaptation request has been received. If so, then the
source program execution will be suspended and a state ob-
ject comprising the current state information will be created.
The state object is then transferred to the location in the tar-
get program using a cascade adaptation mechanism [15].
During the transfer, the state object is transformed from a
state object for the source program to a state object for the
target program. At the location in the target program, the
state of the target program is restored from the state object
and the execution is resumed from the point in the target
program. We have developed a cascade adaptation tech-
nique to handle the state transformation from the source
to the target in Java, which is omitted due to space con-
straints [15]

3.3.2 Enable adaptation in legacy code

To enable adaptation in legacy programs, we replace calls
to the constructors of the non-adaptive classes with those
of the adaptive class. Manually identifying the construc-
tion statements in the legacy code and modifying the code
directly is undesirable. First, there may be numerous loca-
tions where the objects are constructed, making the manual
approach tedious and error prone. Second, the adaptation
concern will be entangled with the legacy code, making fu-
ture maintenance difficult. Therefore, we apply the aspect-
oriented technique to perform the code replacement. We
define pointcuts to identify the calls to the constructors of
the non-adaptive class. Then we use an around advice to
replace them with calls to constructors of the adaptive class.
The objects of the adaptive class then can be used through-
out the legacy program in the same way as for the non-
adaptive objects, except that they are capable of perform-
ing the designed adaptation. By using the aspect-oriented
approach, we do not directly modify the legacy code, thus
separating the adaptation concerns from the non-adaptation
concerns.

4 Conclusions and Future Work

In this paper, we introduced an approach to transform
non-adaptive legacy software into adaptive software with
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assurance. Our approach leverages UML diagrams and for-
mal techniques to provide assurance in adaptation, i.e., sat-
isfying local properties and global invariants. In order to en-
able assured adaptation, our approach introduces software
engineering activities on three layers: the implementation
layer, the UML layer, and the formal language layer. The
design of the adaptive programs is performed on the UML
layer. The analysis for correctness is performed on the for-
mal languages layer. The final adaptive programs are gen-
erated for the implementation layer. The transformation of
different artifacts between these layers is accomplished by
using the metamodel-based technique. In the implementa-
tion, adaptation concerns and non-adaptation concerns are
disentangled by using an aspect-oriented programming ap-
proach.

We have developed guidelines for the transformation
between different types of artifacts using the metamodel-
based technique. So far, the guidelines are being sys-
tematically followed by the developers, however, they are
amenable to automation. Our future work will focus on the
automation of the translations between artifacts in the pro-
posed technique. We have also initiated studies of using
more design patterns to achieve more flexible architectures
in the adaptive software implementation.
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“A study on the current state of the art in tool-supported uml-
based static reverse engineering,” in Proc. 9th Working Conf.
on Reverse Engineering, pp. 22–32, 2002.

[18] B. N. Bershad et al., “Spin - an extensible microkernel for
application-specific operating system services,” tech. rep.,
Dept. of Computer Science and Engineering, University of
Washington, 1994.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00  © 2007


