
A Reflective Aspect-oriented Model Editor Based on Metamodel Extension

Naoyasu Ubayashi, Shinji Sano and Genya Otsubo
Kyushu Institute of Technology, Japan

ubayashi@acm.org, {sano,otsubo}@minnie.ai.kyutech.ac.jp

Abstract

AspectM, an aspect-oriented modeling language, pro-
vides not only basic modeling constructs but also an exten-
sion mechanism called metamodel access protocol (MMAP)
that allows a modeler to modify the metamodel. MMAP
consists of metamodel extension points, extension opera-
tions, and primitive predicates for defining pointcut desig-
nators. In this paper, a reflective model editor for support-
ing MMAP is proposed. A new modeling construct can be
introduced by extending the metamodel. This mechanism, a
kind of edit-time structural reflection, enables a modeler to
represent domain-specific crosscutting concerns.

1 Introduction

Aspect-oriented programming (AOP) [9] can separate
crosscutting concerns from primary concerns. In major
AOP languages such as AspectJ [10], crosscutting concerns
including logging, error handling, and transaction are mod-
ularized as aspects and they are woven to primary concerns.
AOP is based on join point mechanisms (JPM) consisting
of join points, a means of identifying join points (pointcut),
and a means of semantic effect at join points (advice). In
AspectJ, program points such as method execution are de-
tected as join points, and a pointcut designator extracts a
set of join points related to a specific crosscutting concern
from all join points. A weaver inserts advice code at the
join points selected by pointcut designators.

Aspect orientation has been proposed for coping with
concerns not only at the programming stage but also at the
early stages of the development phases such as requirements
analysis and architecture design. Aspects at the modeling-
level are typically static structures, such as UML diagrams,
and are not much concerned with behavior as in AOP.

We previously proposed a UML-based aspect-oriented
modeling language called AspectM [15]. A modeler can
represent crosscutting concerns without considering details
of implementation languages and platform because a model
can be translated into source code by the model compiler.

AspectM provides not only major JPMs but also a mech-
anism called metamodel access protocol (MMAP) [16] that
allows a modeler to modify the metamodel, an extension of
the UML metamodel. The mechanism enables a modeler to
define a new JPM that includes domain-specific join points,
pointcut designators, and advice. There are two approaches
for extending model elements in UML: a lightweight ap-
proach using UML profiles and a heavyweight approach
that extends the UML metamodel by using MOF (Meta Ob-
ject Facility). While it is easy to adopt UML profiles, there
are applications that need metamodel extension because
stereotypes in UML profiles are insufficient: the typing
of tags is weak; and new associations among UML meta-
model elements cannot be declared [3]. On the other hand,
the MOF approach is very strong because all of the meta-
model elements can be extended. However, it is not easy
for a modeler to extend the UML metamodel by using the
full power of the MOF. MMAP aims at a middleweight ap-
proach that restricts available extension by MOF. Although
the notion of MMAP is useful, it needs tool support.

In this paper, a reflective model editor for supporting
MMAP is proposed. This reflective mechanism, a kind of
edit-time structural reflection, enables a modeler to define a
JPM specific to a system or a family of systems. For exam-
ple, a modeler can define an aspect that captures a group of
methods that are targets of a domain-specific logging.

The remainder of the paper is structured as follows. Sec-
tion 2 explains AspectM and MMAP. In Section 3, the con-
cept of a reflective model editor is introduced. Section 4
shows an implementation method. Section 5 introduces re-
lated work. Concluding remarks are provided in Section 6.

2 AspectM and MMAP

This section briefly excerpts the overview of AspectM
and MMAP from our previous work [15, 16].

2.1 Aspect orientation at the modeling-level

Although JPMs have been proposed as a mechanism
at the programming-level, they can be applied to the

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00  © 2007



Table 1. JPM in AspectM
JPM Join point Advice
PA operation before, after, around
CM class merge-by-name
NE class diagram add/delete-class
OC class add/delete-operation

add/delete-attribute
RN class, attribute, operation, rename
RL class add/delete-inheritance

add/delete-aggregation
add/delete-relationship

join point(class)

join point(class)

join point(class)

classA||classB
(extract join point
 whose name is
 classA or classB)

pointcutclassA

attributes

operations

classB

attributes

operations

classC

attributes

operations

classA

attributes

operations

new attributes

new operations

classB

attributes

operations

new attributes

new operations

advice

add new attributes
add new operations

weave

Figure 1. Modeling-level aspect orientation

modeling-level. Figure 1 shows an example of the
modeling-level aspects. In Figure 1, a class is regarded as a
join point. The pointcut definition ’classA || classB’
extracts the two classes classA and classB from the
three join points class A, classB, and classC. Add
new attributes and add new operations are regarded as ad-
vice. In Figure 1, new attributes and operations are added
to the two classes classA and classB. The effect of the
advice crosscuts these two classes. As shown here, aspects
at the modeling-level are typically static structures, and are
not much concerned with behavior.

AspectM supports six kinds of modeling-level JPMs: PA
(pointcut & advice as in AspectJ [10]), CM (composition as
in Hyper/J [14]), NE (new element), OC (open class as in
AspectJ inter-type declaration), RN (rename), and RL (re-
lation). Figure 1 is an example of OC. Table 1 shows the
outline of these JPMs.

2.2 AspectM language features

Figure 2 shows an aspect diagram that corresponds to
Figure 1. The notation is similar to that of the UML class
diagram. An aspect diagram is separated into three com-
partments: aspect name and JPM type, pointcut definitions,
and advice definitions. An aspect name and a JPM type are
described in the first compartment. Pointcut definitions are
described in the second compartment. Each of them con-
sists of a pointcut name, a join point type, and a pointcut

   [OC]
newAttributeX

classAandB:class
  {pointcut-body :=
    cname("classA")||cname("classB")}

addX[classAandB]:add-attribute
  {advice-body := "attributeX"}

A

Figure 2. AspectM notation

body. In pointcut definitions, we can use designators includ-
ing cname (class name matching), aname (attribute name
matching), and oname operation name matching). These
pointcut designators can be defined using MMAP as ex-
plained in 2.3. We can also use three logical operations:
&& (and), || (or), and ! (not). Advice definitions are de-
scribed in the third compartment. Each of them consists of
an advice name, a pointcut name, an advice type, and an
advice body. A pointcut name is a pointer to a pointcut def-
inition in the second compartment. An advice is applied at
join points selected by a pointcut.

2.3 MMAP

Figure 3 shows a part of the AspectM metamodel de-
fined as an extension of the UML metamodel. The
Aspect class inherits the Classifier class. Pointcuts
and advice are represented by the Pointcut class and
the Advice class, respectively. Concrete advice bodies
corresponding to the six JPMs are defined as subclasses
of the AdviceBody class: PointcutAndAdvice for
PA, Composition for CM, NewElement for NE,
OpenClass for OC, Rename for RN, and Relation for
RL. The PointcutBody class is common to all JPMs be-
cause pointcuts can be specified uniformly.

MMAP, a set of protocols exposed for a modeler to ac-
cess the AspectM metamodel, is comprised of extension
points, extension operations, and primitive predicates for
navigating the AspectM metamodel. An extension point
is an AspectM metamodel element that can be extended
by inheritance. The extension points includes Class,
Attribute, Operation, and a set of JPM metaclasses.
In Figure 3, a class with a thick line is an extension point.
An extension operation is a modeling activity allowed at
the exposed extension points. There are three operations in-
cluding define subclasses, add attributes to subclasses, and
create associations among subclasses. Table 2 is a list of
primitive predicates. Using these predicates, pointcut des-
ignators can be defined as below. The defined pointcut des-
ignator represents all elements that satisfy the right-hand
side predicates.

define pointcut cname(c):
mata-class-of("Class", c) &&
member-of("Name", "Class") &&
value-of(c, "Name")

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00  © 2007



Feature Classifier

Class

Aspect

ComponentAspectOrdinaryAspectAspectFeature

Advice AdviceBody Pointcut

StructualFeature BehavioralFeature

Attribute Operation

PointcutAndAdvice NewElement

OpenClass

Rename

RelationComposition

ModelElement

NamespaceGeneralizableElement

extension point

PointcutBody

Figure 3. AspectM metamodel

Table 2. Primitive predicates
Predicate Explanation
meta-class-of(mc, c) mc is a metaclass of c
member-of(m, c) m is a member of a class c
value-of(v, a) v is value of an attribute a
super-class-of(c1, c2) c1 is a superclass of c2
related-to(c1, c2) c1 is related to c2

The design of MMAP is similar to that of application
frameworks in which hot-spots should be exposed. By us-
ing MMAP, a modeler need not redefine the AspectM meta-
model. The modeler has only to extend these hot-spots.

The idea of MMAP originates in the mechanisms of ex-
tensible programming languages, such as metaobject pro-
tocol(MOP) [8] and computational reflection [11] in which
interactions between the base-level (the level to execute ap-
plications) and the meta-level (the level to control meta in-
formation) are described in the same program. There are
two kinds of reflection: behavioral reflection and structural
reflection. MMAP corresponds to the latter. That is, MMAP
focuses on the reflection whose target is a model structure.

3 Reflective model editor

We have developed a prototype of the reflective model
editor for supporting MMAP. Our previous editor [15] did
not support a reflective mechanism. In this section, the con-
cept of the reflective model editor and the metamodel ex-
tension procedures using this editor are demonstrated.

AspectM
metamodel

AspectM
model

reify

reflect
introduce

new kinds of
model elements

modify
the AspectM
metamodel

exposed
extension point

model editor

meta-level
(metamodel editor)

base-level
(base editor)

protocols

MMAP
modeler

edit-time
reflection

Figure 4. Reflection mechanism

3.1 Concept

The reflective model editor provides not only facilities
for editing UML and aspect diagrams but also a mechanism
for structural reflection based on MMAP. This editor allows
a modeler to not only edit application models but also ex-
tend, modify, and customize the AspectM metamodel.

Figure 4 illustrates the concept of the editor consisting
of two parts: the base editor and the metamodel editor. The
former is the editor for base-level modeling, and the latter is
the editor for modifying the AspectM metamodel and defin-
ing pointcut designators using primitive predicates. Figure
5 shows the user interface of the reflective model editor. The
metamodel editor exposes extension points. Only extension
points are displayed on the editor screen. Other metamodel
elements are not visible to a modeler, and not allowed to
be modified. At an extension point, an extension operation
such as define subclasses can be executed. This extension
operation corresponds to reification in computational refec-
tion. The result of extension operations enhances the func-
tionality of the base editor. That is, new kinds of model
elements can be used in the base editor. This corresponds to
the reflect concept in computational relection. In reflective
programming, a programmer can introduce new language
features using MOP. In aspect modeling, a modeler can in-
troduce new model elements using MMAP.

3.2 Extension procedure

Using an example, we illustrate the extension pro-
cedure. Figure 6 is a model of an invoice processing
system (the class diagram is cited from [3]). This model
includes several domain-specific model elements that
cannot be described by only using the original AspectM
facility. This model is comprised of two kinds of domain-
specific distributed components: DCEntityContract

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00  © 2007



Figure 5. Reflective model editor

for defining the contract of a distributed entity com-
ponent and DCControllerContract for defining
the contract of a distributed controller component.
The Logging aspect adds a log operation to the
DCEntityContracts components whose UniqueId
is not assigned by users. Although the bodies of the
logClasses pointcut and the merge advice whose
type is OC<<DCLogger>> are invisible in Figure 6,
these bodies are defined as below. The Logging as-
pect includes domain-specific pointcut designators and
advice. The DCEntityContract element, which is
regarded as one of the domain-specific join points for a
family of invoice processing systems, is the target of the
DCEntityContract UniqueId isUserAssigned
pointcut. The functionality of the OC<<DCLogger>>
advice is restricted because only the operations with
<<DCLoggerOperation>> are the target of add/delete-
operation in OC.

pointcut-body:=
!DCEntityContract_UniqueId_isUserAssigned(*)

advice-body:=<<DCLoggerOperation>>log()

Steps for modeling-level reflection

Using the reflective model editor, a modeler can edit the
model shown in Figure 6. The following is the outline of
extension steps: 1) execute extension operations; 2) assign
a graphic notation to a new model element; 3) check the
consistency between the previous metamodel and the new
metamodel; 4) regenerate the AspectM metamodel; and 5)
restart the base editor.

In step 1, extension operations are executed at exposed
extension points in order to introduce new domain-specific
model elements as shown in Figure 7. The constraints
among new model elements can be specified using OCL
(Object Constraint Language). The model elements that vi-
olate the OCL descriptions can be detected by the editor.
Pointcut designators are also defined as below. This point-
cut designator selects all classes that match the following
conditions: 1) the metaclass is DCEntityContract; 2)
the value of the isUserAssgned is true. In case of Fig-
ure 6, the negation of this pointcut designator selects the
two classes Customer and Invoice.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00  © 2007



Figure 6. Example of a domain-specific model

Figure 7. Metamodel extension

define pointcut
DCEntityContract_UniqueId_isUserAssigned(c):
meta-class-of("DCEntityContract", c) &&
member-of(a, c) &&
meta-class-of("UniqueId", a) &&
member-of("isUserAssigned", "UniqueId") &&
value-of("true", "isUserAssigned")

After step 2 – 5, the new model element can be used in
the base editor. In the reflective model editor, an extension
model is separated from the original AspectM metamodel.
Extension models can be accumulated as plug-in compo-
nents for domain-specific modeling.

4 Implementation

The AspectM tool consists of the reflective model editor
and the model compiler that translates a model into Java.

The reflective model editor1, a plug-in module for
Eclipse, is developed using the Eclipse Modeling Frame-

1The prototype of the refective model editor can be downloaded from
http://posl.minnie.ai.kyutech.ac.jp/.

work (EMF) [2] and Graphical Modeling Framework
(GMF) [4]. The former is a tool that generates a model
editor from a metamodel, and the latter provides a genera-
tive component and runtime infrastructure for developing a
graphical editor based on EMF. EMF consists of core EMF,
EMF.Edit, and EMF.Codegen: the core EMF provides a
meta model (Ecore) for describing models and runtime sup-
port; EMF.Edit provides reusable classes for building ed-
itors; and EMF.Codegen generate code needed to build a
complete editor for an EMF model. Since an editor gener-
ated from EMF does not provide graphical facilities, GMF
is used for this purpose.

The reflective mechanism is implemented as follows:
1) the original AspectM metamodel is defined as an EMF
model, and the original base editor is generated using
EMF.Codegen; 2) the metamodel extension specified by a
modeler is saved as an EMF model, and the editor code
for the extension is generated using EMF.Codegen; and 3) a
new plug-in is generated from the code for the base editor
and the extension, and replaced with the original plug-in.

In the model compiler that supports MMAP, the meta-
model and application models are transformed to a set of
Prolog predicates. For example, the Invoice class and
related metamodel elements are represented as follows.

-- from Invoce class
meta-class-of("DCEntityContract", "Invoice"),
member-of("number", "Invoice"),
meta-class-of("UniqueId", "number"),
value-of("true", "isUserAssigned").

-- from AspectM metamodel
member-of("isUserAssigned", "UniqueId").

The model compiler transforms a domain-specific pointcut
into a Prolog query, and checks whether the query sat-
isfies the above facts. For example, the negation of the
DCEntityContract UniqueId isUserAssigned
pointcut selects Customer and Invoice as join points.
The model compiler executes advice at these join points.
JPL, a set of Java classes providing an interface between
Java and Prolog, provided by SWI-Prolog [13] is used for
bridging the model compiler and the Prolog interpretor.

In MMAP, Advice/AdviceBody are not exposed as
extension points because this extension need new weaver
modules that can handle new kinds of advice. Adopting our
approach, the model compiler need not be modified even if
the metamodel is modified by the reflective model editor.

5 Discussion and Related Work

The notion of domain-specific aspect orientation is im-
portant. Early AOP research aimed at developing method-
ologies in which a system was composed of a set of aspects
described by domain-specific AOP languages [9]. Domain-
specific aspect orientation is necessary not only at the pro-
gramming stage but also at the modeling stage. J.Gray

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00  © 2007



proposed a technique of aspect-oriented domain model-
ing (AODM) [5] that adopted the Generic Modeling Envi-
ronment (GME), a meta-configurable modeling framework.
The GME provides meta-modeling capabilities that can be
adapted from meta-level specifications for describing do-
mains. The GME approach is heavyweight because meta-
level specifications can be described fully. On the other
hand, our approach is middleweight. Although all of the
AspectM metamodel cannot be extended, domain-specific
model elements can be introduced at relatively low cost.

To evaluate the effectiveness of our approach, we applied
the reflective model editor to a real system. Using the re-
flective mechanism, we could construct a model editor for
describing embedded systems composed of software mod-
ules, sensors, actuators, and usage contexts. These model
elements and OCL constraints among them could be intro-
duced easily. We did not need to modify the metaclasses
that were not exposed by MMAP. From the current our ex-
perience, MMAP is sufficient to extend the AspectM meta-
model. We believe that the MOP approach in the modeling-
level is more effective than the full metamodel extension
approaches in terms of the cost and usability.

MMAP is similar to an edit-time metaobject protocol
(ETMOP) [1] proposed by A.D.Eisenberg and G.Kiczales.
ETMOP runs as part of a code editor and enables meta-
data annotations to customize the rendering and editing of
code. An ETMOP programmer can define special meta-
classes that customize a display and editing. They imple-
mented a REMO for editing UML state charts. Although
their research goal that is to provide mechanisms for mak-
ing programs more visually expressive is similar to our goal,
we focus on the provision of middleweight mechanisms for
domain-specific expressiveness.

K.Gybels and J.Brichau proposed pattern-based point-
cut constructs using logic programming facilities [6].
K.Ostermann, et al. also proposed a pointcut mechanism
based on logic queries written in Prolog [12]. The mecha-
nism is implemented for a typed AOP language, called AL-
PHA. Although our pointcut definition method using Pro-
log is basically the same with their approaches, the target
of our approach is not programming but modeling in which
rich pointcuts can be defined because the information of a
model is richer than that of a program.

Our approach is effective for software product line (SPL)
[7] in which a product is constructed by assembling core
assets, components reused in a family of products. These
core assets are identified by analyzing features in a family
of products. The core assets will be developed efficiently if
their specifications can be described using notations specific
to the product family. These notations can be introduced
easily by using the reflective model editor. Moreover, the
extension descriptions can be accumulated as core assets.

6 Conclusion

This paper proposed a reflective model editor. Although
the current editor might need refining, it is an important step
towards extensible aspect-oriented modeling.

References
[1] Eisenberg, A. and Kiczales, G.: A Simple Edit-Time

Metaobject Protocol, Workshop on Open and Dynamic
Aspect Languages (OAL) 2006.

[2] EMF, http://www.eclipse.org/emf/.
[3] Frankel, D. S.: Model Driven Architecture, John Wiley &

Sons, Inc., 2003.
[4] GMF, http://www.eclipse.org/gmf/.
[5] Gray, J., et al.: An Approach for Supporting

Aspect-Oriented Domain Modeling, In Proceedings of
International Conference on Generative Programming and
Component Engineering (GPCE 2003), pp.151-168, 2003.

[6] Gybels, K. and Brichau, J., Arranging Language Features
for More Robust Pattern-based Crosscuts, In Proceedings of
the 2nd International Conference on Aspect-Oriented
Software Development (AOSD 2003), pp.60-69, 2003.

[7] Kang, K. C., et al.: Feature-Oriented Product Line
Engineering, IEEE Software, Vol. 9, No. 4, pp.58-65, 2002.

[8] Kiczales, G., Rivieres, J.des , and Bobrow, D. G.: The Art
of the Metaobject Protocol, MIT Press, 1991.

[9] Kiczales, G., et al.: Aspect-Oriented Programming, In
Proceeding of European Conference on Object-Oriented
Programming (ECOOP’97), pp.220-242, 1997.

[10] Kiczales, G., et al.: An Overview of AspectJ, In
Proceedings of European Conference on Object-Oriented
Programming (ECOOP 2001), pp.327-353, 2001.

[11] Maes, P.: Concepts and Experiments in Computational
Reflection, In Proceedings of Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA’87), pp.147-155, 1987.

[12] Ostermann, K., Mezini, M., and Bockisch, C.: Expressive
Pointcuts for Increased Modularity, In Proceedings of
European Conference on Object-Oriented Programming
(ECOOP 2005), pp.214-240, 2005.

[13] SWI-Prolog, http://www.swi-prolog.org/.
[14] Tarr, P., Ossher, H., Harrison, W. and Sutton, S.M., Jr.: N

Degrees of Separation: Multi-dimensional Separation of
Concerns, In Proceedings of International Conference on
Software Engineering (ICSE’99), pp.107-119, 1999.

[15] Ubayashi, N., Tamai, T., Sano, S., Maeno, Y., and
Murakami, S.: Model Compiler Construction Based on
Aspect-Oriented Mechanisms, In Proceedings of the 4th
International Conference on Generative Programming and
Component Engineering (GPCE 2005), pp.109-124, 2005.

[16] Ubayashi, N. Tamai, T., Sano, S., Maeno, Y., and
Murakami, S.: Metamodel Access Protocols for Extensible
Aspect-Oriented Modeling, In Proceedings of the 18th
International Conference on Software Engineering and
Knowledge Engineering (SEKE 2006), pp.4-10, 2006.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00  © 2007


