
Putting the “Engineering” into Software Engineering with Models

Brian Berenbach, Sascha Konrad
Siemens Corporate Research, Inc.

 {brian.berenbach, sascha.konrad}@siemens.com

Abstract

Models are frequently used for illustrations in
software design documents. Commonly they are used to
show static structure and less often, external dynamic
behavior. However, in software engineering, the lack of
conceptual models often inhibits creativity and
understanding, which may in turn lead to incomplete or
poor design. This paper describes our experience using
models for the architectural, conceptual and detailed
design for software systems, identifies perceived
weaknesses in traditional approaches and makes
recommendations for future modeling tools and
techniques.

1. Introduction

Each domain has its own standard for design or
modeling. In civil and mechanical engineering blue
prints are used, where a blueprint is defined as “a plan
or technical drawing usually documenting an
architecture or an engineering design” [1]. More
generally, the term "blueprint" has come to be used to
refer to any detailed plan. In electrical engineering there
is the traditional circuit diagram. This has been
augmented in electronics design with standards for
circuit board design. In the software world it is
recognized that working in the problem domain results
in higher productivity and better quality products, than
working at a low level [2], the question is, how to get
there?

One of the authors (Berenbach) was involved in the

1980s with the development of graphical languages for
chemical process and power plant design. He had first
hand exposure to the difference between a procedural
and domain oriented language. One of the languages
developed was the CETRANTM language.1 The
CETRANTM language is an object-oriented language for
the high-level, graphical design of control systems. A
new hire was asked to do some heat exchanger software
design and was left to his own devices. This effort
required creating a FORTRAN software model of heat
exchanger behavior. Two months later, he came back

1 CETRAN is a trademark of the ABB Corporation.

with the software. Apparently, no one had told the new
hire about the CETRANTM language. The employee’s
supervisor then redid the design using CETRAN in
under two hours and the code was compiled directly
from the CETRAN drawing.

When creating designs for other domains, even when

the output is software, it is possible and sometimes
necessary to use a domain specific language. However,
what happens when the design will be for a complex
software system designed and implemented by software
professionals (as opposed to non-software domain
experts)?

Researchers have taken steps towards improving the

engineering process when using models. For example,
the use of a UML 2.0-based metamodel has been
explored for software process modeling [3]. Also, the
use of UML for conceptual modeling has been reported
[4].

Martin Fowler has stated: “The fundamental driver

behind [graphical modeling languages] is that
programming languages are not at a high enough level
of abstraction to facilitate discussions about design” [5].
So we perceive three major problems with the use of
models for software engineering:

• Incorrect use of models by novices
• Inadequate tooling
• Insufficient training in engineering design

These three problems are described in more detail

below.

2. Common modeling mistakes

In general, developers understand the benefits
modeling can bring, but often make common mistakes
when applying these techniques. Since the switch to
UML is sometimes combined with the transition to
object-oriented design techniques, modelers can make
mistakes stemming from not fully understanding the
concepts of object-oriented development. Some
common mistakes have been documented by Malveau
et.al. in the form of anti-patterns [6]. Similar to design

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

patterns [7], an anti-pattern is a commonly reinvented
solution to problems faced by developers when applying
object-oriented development techniques. However, in
contrast to design patterns, the anti-patterns negatively
affect system design and potentially cause more
problems than they solve. A sample object-oriented
anti-pattern is the so-called Singletonitis; an overuse of
the well-known Singleton design pattern [7]. Stewart
identified 25 (and more) common mistakes done by
developers in real-time software development [8]. One
of the most severe mistakes he identifies is that
documentation is written after the implementation,
instead of before and during.

Subsequently, we describe common mistakes that we

identified in UML specifications obtained from
customers.

2.1 Using the UML just for “pretty pictures”

A common misconception is that a UML diagram is
just a “pretty picture” of the software system to be
developed. However, a UML diagram should provide a
correct abstraction of parts of or the whole system (as
done by the blueprint for the boiler shown in Figure 1).

If the diagram does not correctly reflect the system that
will be realized, then the usefulness of the diagram is
questionable. In the worst case, the diagram could
convey incorrect information about the system to the
reader.

The level of abstraction between diagrams may also

vary. For example, a use case diagram may be used to
describe a contextual view of the system and its
environment, while additional use case diagrams can
then be used to provide a more detailed view of the
functionality of the system. However, novice modelers
often do not make use of these abstraction levels and try
to convey all information in a single diagram. As such,
these diagrams become hard to read and understand, and
fail to provide an abstract view on a portion of the
system.

Another implication of the “pretty pictures” myth is

the assumption that no semantics are associated with a
UML diagram. As a result of this misconception,
obvious errors in the diagram cannot be automatically
identified. For example, without a semantic meaning for
the flow between two components, incompatible inputs

Figure 1 Conceptual Diagram in Mechanical Engineering

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

and outputs may be connected and result in a severe
design flaw.

2.2 Not understanding the difference between
model and diagram

A related issue we uncovered is that modelers often
have no clear understanding of the difference between a
model and a diagram. As aforementioned, a diagram is
an abstraction of a particular aspect of the system. A
model, however, contains all the elements of the system
abstraction. This fact can quickly lead to problems,
where developers focus on intra-diagram correctness,
but do not check that the given information is consistent
between all the diagrams. For example, Figure 2
contains three separate class diagrams, each showing
dependency relationships between two classes. While
not evident from a single diagram (intra-diagram), a
circular dependency exists in the model (inter-diagram),
in which class A depends on class B that depends on
class C that dependents on class A again. In large and
complex models, such mistakes may be hard to identify
and these checks should be automated.

A

B

B

C

C

A

Figure 2 Cross-diagram circular dependencies

A related mistake we often identify is what we refer
to as “dangling elements”. Some CASE tools allow for
an element to exist in the UML model that is not shown
on any of the diagrams. This commonly indicates a
problem with the model and should be investigated.
Either the element should be included on at least one
diagram, or should be removed from the model if
determined to be obsolete.

2.3 Only utilizing the static view of UML

The UML 2.0 specification2 contains 13 different
diagram types. UML class diagrams are arguably the
most commonly used type, since they readily lend
themselves to code generation and reverse engineering.
A large portion of UML models we worked with are
purely focusing on the structural aspects of the system,
while neglecting functional and behavioral views. This

2 www.omg.org

focus leads to leaving a lot of potential of the UML
untapped. Structural diagrams seldom contain more
information than could be automatically reverse
engineered from the code. However, information about
the behavior of the system and what requirements are
realized may be harder to determine. In general, we
suggest that modelers also employ functional and
behavioral diagram types in order to provide richer
UML models. For example, use case diagrams have
shown useful for determining the number and type of
interfaces needed by a system. In addition, from inter-
object views, such as activity and state diagrams, test
cases and code can be automatically generated.

2.4 Modeling procedural programs

Numerous modelers have a great portion of their
experience in writing procedural programs and have
recently switched to object-oriented development. As a
result, they often apply UML not in an object-oriented
fashion. Evidence of these practices can be found in
numerous UML models, such as god objects [6] and
classes that serve as containers for global variables. The
transfer of procedural development style to UML
modeling often results in system designs that are
difficult to read. In addition, the modeler cannot make
effective use of the abstraction mechanism provided by
the UML, and the result is a model that is difficult to
extend and reuse.

2.5 No common style

According to Stewart [8], the lack of naming and
style conventions is one of the most severe mistakes in
real-time software development. As a result of this lack
of conventions, the readability of code is severely
affected, since each programmer may use their own
style. In addition, the maintainability and verifiability of
the code is reduced.

We have made similar observations for UML

models. Clear naming conventions for UML model
elements facilitate the understandability of diagrams
considerably. In addition, strict naming conventions
ensure that modelers do not use different names to refer
to the same element (such as an attribute or operation).
We also advocate the use of UML notes in diagrams
that clearly state the name of the diagram, the creation
date, the last modification date, who it was last modified
by, and the current status of the diagram. This
information facilitates the modeling process, since the
last modifier and current state of the diagram (e.g., draft
versus final) can be easily determined. Figure 3 contains
a sample UML note that provides information for a class
diagram describing mail containers. Putting such a label
(e.g., a documentation block) on each diagram is

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

mandatory in other engineering domains, but too often
not done in software engineering.

3. What is enough abstraction?

When using models as part of an engineering process
one of the objectives is to convey as much information
as possible as succinctly as possible. This is relatively
easy to do in domains where each object in a model
represents something tangible such as a door, window,
capacitor, etc. In Figure 1 we see a sample from
mechanical engineering illustrating a boiler system in a
house3. We can recognize this as a boiler for several
reasons:

• There is a legend that describes the illustration,
• There is a significant amount of metadata, such

as drawing number, date, status, etc.,
• It is intuitively recognizable that it is a boiler

because it looks like a boiler.

Furthermore the illustration combines both static and
structural information with dynamic information such as
water flow and controls. Note the standard symbol set
representing valves, drains and heating coils.

Each of the objects in the drawing contains metadata,
but it is necessary, using the drafting tool, to open the
object to see the object’s metadata. Metadata includes
information such as:

• Dimensions
• Construction material
• Third party purchase information (if available)
• Catalog number
• Pricing information
• Assembly information.

Furthermore, it is possible to use the information to

generate a bill of materials.

Software engineering is not analogous to mechanical

engineering primarily because of the malleable nature of
the product:

• The perceived and immediate costs of
modification are generally not prohibitive

3 Figure 1 illustration courtesy of Parker Boiler Company, Los
Angeles, CA.

• There is no bill of materials
• Many constructs are unique

However, the unique attributes of software based

systems cannot be used as an excuse to avoid doing the
“hard” up front engineering to produce viable product.
Unfortunately, the training of software engineers has not
always included some core engineering design
fundamentals that other engineering curricula provide
(e.g., courses in engineering complex systems, design
workshops and projects) [10].

In the world of software engineering, we do not even

have standard symbols for the most basic, common
software constructs, such as stacks and queues. If a
stack is represented using the UML we need:

• A static class diagram to show the object(s)
that make up the stack,

• A state diagram to show the legal states that the
stack can be in, and what triggers a transition
from one state to another and

• An object communication diagram to show
how the stack is used.

The result is a set of views into the UML model that

exactly describes the stack, except that looking at the
diagrams (that is another problem, simultaneously
looking at several diagrams) the viewer cannot tell that
it is a stack.

So we now have at least two things missing from
traditional software modeling languages that are
provided by or intrinsic to design languages in other
domains:

• A recognizable set of symbols
• One or more diagrams that combine static and

dynamic information in a visual presentation
that provides an easily understood conceptual
design.

Note that each diagram should be part of the model,

not just a sketch, as it must provide coherent model
information.

4. The use of patterns in modeling

The use of patterns in the UML is NOT analogous to
the use of symbols in other modeling domains:

• Patterns may be represented by a
combination of model fragments using more
than one diagram to explain them (e.g., the
Proxy pattern [7]).

• Once a pattern is used in a set of UML
models, the pattern disappears and a set of
model elements is left on more than one

Figure 3 Note used as a diagram legend

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

diagram with no coherent representation as
a single meaningful artifact.

Contrast the use of a pattern with the illustration in
Figure 4 showing a pump with a bypass, a common
construct. Note that no matter how many times and
wherever the construct is placed in an engineering
diagram it will still be recognizable as a pump with a
bypass, and it can be fully represented by a single
combination of symbols, e.g., multiple diagrams are not
necessary to fully understand form and function.

5. Techniques used to overcome the
limitations of current modeling languages

Different techniques have been used to overcome the
limitations inherent in the UML. Several of them are
described below.

5.1 The use of profiles in modeling

Profiles can be used to augment the UML and
increase clarity [9]:

• Addition of domain specific symbols
• Business rules expressed programmatically

or via the OCL.

Profiles can be used to increase clarity and augment
modeling in specific domains (e.g., threat modeling,
requirements engineering). Unfortunately, they still do
not provide the ability to roll up complex constructs into
universally recognized artifacts, or to create meaningful
conceptual views. An example of a hazard profile for
the UML can be seen in Figure 5. Non-model diagrams
and illustrations created with other diagramming tools
(e.g., PowerPoint, Visio) are still necessary.

5.2 Vendor specific modeling extensions

Vendor specific modeling extensions can make a big
difference in terms of diagram legibility and conceptual
visualization. Some of the most useful extensions we
have found include:

• The ability to draw freeform on a diagram,
• Drop pictures and images into diagrams,
• Add modeling rules (e.g., what new

symbols can connect to what other symbols)
and

• Programmatically manipulate user extended
profiles.

Figure 6 shows a conceptual diagram for a hash table

with overflow chaining. The diagram was part of a
model created for a commercial control system. The
model was done using a tool that allowed a broad range
of extensions, including the ability to mix sketched
constructs with standard symbols and connect them,
much the way that a comment can be connected to a
model element in the UML. The ability to create
sketches, keep them within the model, and associate
them with standard artifacts resulted in a highly legible
model that could be navigated by “point and click” from
high level concepts down to very low level details and
software.

6. Some useful best practices
The authors have found when creating complex

models that some techniques can be used to integrate
concept with design in a coherent fashion. Some of
these techniques have already been discussed in Section
2.

Figure 4 Pump with bypass and valve Figure 5 Hazard profile for the UML

Figure 6 Hash table conceptual diagram

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

6.1 Keep analysis and design in the same model
When analysis and design are in the same model, it is

easier to perform programmatic model validations.
Moreover, the viewer of the model can easily navigate
from a design construct to the corresponding
requirements expressed as use cases [11].

6.2 Use domain specific profiles

Domain specific profiles can increase clarity and
raise the level of abstraction of a model. The use of
custom symbols can allow the roll-up of complex
constructs into a single symbol that is universally
recognized (e.g., replace the Proxy pattern with a single
proxy symbol that explodes to the pattern on ancillary
diagrams).

6.3 Incorporate illustrations and pictures
directly into a model

By incorporating illustrations and pictures directly in
an engineering model:

• Problems of versioning are minimized
• Navigation is significantly improved as

viewers can “click” to see an illustration.

One technique used on the design of a control system

was to replace all the class symbols, where the class
represented a GUI with the actual picture of the GUI.
On the sequence diagrams, the engineer would then
draw messages to and from the form, increasing clarity.

Another practice that seemed to work quite well was

to take a hardware component that had embedded
software and show the picture of the hardware on the
UML component diagram instead of the standard UML
component symbol. An alternative might be to replace
the package symbol with the picture of the hardware
component, although this technique was not applied to
the model.

On one project, there were a large number of

blueprints of operator consoles and panels. The panels
were digitized and placed in the model, each on its own
diagram. Each control point on the panel (e.g., switch,
dial) was represented by a hot spot that would launch
the appropriate high level sequence diagram showing
the interaction of that component with the software.

7. Conclusions

We believe that the UML alone without extension
does not provide adequate facilities for conceptual or
high level engineering of designs. The lack of this
facility can lead novices to believe that high level
conceptual designs are not necessary, even though they
are used in every other engineering domain. It is

possible to create high level engineering drawings
outside of a UML tool, but there may then be problems
with versioning and traceability.

The ideal solution would be a synthesis of a CAD

style engineering tool with a UML tool. Perhaps some
academic institution will undertake the challenge of
creating such a product (shareware, of course).
Providing facilities for rigorous engineering of designs
does not do any good unless the users have the
appropriate training [10]. Such facilities and training
would go a long way towards improving the success
rate of large, complex software projects.

8. References
[1] http://en.wikipedia.org/wiki/Blueprint
[2] http://www.darpa.mil/ipto/programs/hpcs/
[3] R. Bendraou, M-P. Gervais, X. Blanc, UML4SPM: A
UML2.0-Based metamodel for Software Process Modelling,
ACM/IEEE 8th International Conference on Model Driven
Engineering Languages and Systems, (Models05), Montego
Bay, Jamaica, October 2005.
[4] I. Reinhartz-Berger, “Conceptual modeling of structure
and behavior with UML: The Top Level Object-Oriented
Framework (TLOOF) approach”, Proceedings of the 24th
International Conference on Conceptual Modeling,
Klagenfurt, Austria, October 24-28, 2005.
[5] M. Fowler, UML Distilled, Addison-Wesley, 2004.
[6] William J. Brown, Raphael C. Malveau, Hays W.
McCormick III, Thomas J. Mowbray (1998), AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis.
John Wiley & Sons, 2001.
[7] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns, Addison-Wesley 1995, pp. 207-217.
[8] D. Stewart, “Twenty-Five Most Common Mistakes with
Real-Time Software Development”, tutorial presented at the
1999 Embedded Systems Conference, San Jose, CA, Sept.
1999.
[9] D. Quartel, R. Dijkman, M. van Sinderen. Extending
profiles with stereotypes for composite concepts using model
transformation. ACM/IEEE 8th International Conference on
Model Driven Engineering Languages and Systems
(MoDELS/UML 2005), Montego Bay, Jamaica, October 2-7,
2005, LNCS 3713, Springer, 2005, 232-247.
[10] B. Berenbach, “Requirements Engineering; An Industrial
Perspective”, An Invited Talk, 14th International
Requirements Engineering Conference, Minneapolis, MN.
Sept. 2006.
[11] Brian Berenbach, “The Evaluation of Large, Complex,
UML Analysis and Design Models, Twenty Sixth
International Conference on Software Engineering (ICSE
2004), Edinburgh, Scotland, May 2004.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

