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Abstract 
 

In previous work we have discussed a semantic 
anchoring framework that enables the semantic 
specification of Domain-Specific Modeling Languages 
by specifying semantic anchoring rules to predefined 
semantic units. This framework is further extended to 
support heterogeneous systems by developing a method 
for the composition of semantic units. In this paper, we 
explain the semantic unit composition through a case 
study.  
 
1. Introduction 
 

In [2] [3], we have proposed a semantic anchoring 
framework (SAF) for Domain-Specific Modeling 
Languages (DSMLs) [1]] semantic specification. The 
framework includes a set of well-defined “semantic 
units” (SUs) that capture the behavioral semantics of 
basic behavioral categories using Abstract State 
Machines (ASM) [4] [7] as an underlying formal 
framework. The semantics of a DSML is defined by 
specifying the transformation rules between the 
abstract syntax metamodel of the DSML and that of a 
selected SU. Furthermore, we extend the SAF to 
address the impact of system heterogeneity by 
developing a method to specify DSML semantics as 
the composition of SUs [5]. In this paper, we explain 
semantic unit composition (SUC) in details using an 
industrial strength DSML – TNSM [6] as a case study.  

The organization of this paper is the following: 
Section 2 introduces the core ideas of SUC. In Section 
3, 4, 5 and 6 we explain the SUC in details using a case 
study. Our conclusion is in section 7. 

 
2. Semantic Unit Composition 

 
In the SAF, we define a finite set of SUs, which 

capture the semantics of basic behavioral and 
interaction categories. If the semantics of a DSML can 

be directly anchored to one of these basic categories, 
its semantics can be defined by simply specifying the 
model transformation rules between the metamodel of 
the DSML and the Abstract Data Model (ADM) of the 
SU [2] [3]. However, in heterogeneous systems, the 
semantics is not always fully captured by a predefined 
SU. If the semantics is specified from scratch it is not 
only expensive but we loose the advantages of 
anchoring the semantics to (a set of) common and well-
established SUs. This is not only loosing reusability of 
previous efforts, but has negative consequences on our 
ability to relate semantics of DSMLs to each other and 
to guide language designers to use well understood and 
safe behavioral and interaction semantic “building 
blocks” as well. 

Our proposed solution is to define semantics for 
heterogeneous DSMLs as the composition of semantic 
units. If the composed semantics specifies a behavior 
which is frequently used in system design, the resulting 
semantics can be considered a derived SU, which is 
built on primary SUs, and could be offered up as one 
of the set of SUs for future anchoring efforts. Note that 
primary SUs refer to the SUs that capture the semantics 
of the basic behavioral categories, such as Finite State 
Machine, Timed Automata and Hybrid Automata.  

Mathematically, a SU specification can be 
represented as a 2-tuple <A, R>, where A is an ADM 
specifying the abstract syntax of the SU and R 
represents a set of Operations and Transition Rules. 
We use M = Ι (A) to denote the set of all instances of 
A. Then, each m ∈ M is a well formed Data Model 
defined by the A and R specifies the behavior of each m 
∈ M. The behavior in ASM is modeled by a sequence 
of steps, where a Step in a given state includes the 
execution simultaneously of all Rules whose guard 
conditions are true [4]. Since ASM states are 
mathematical structures (sets with basic operations and 
predicates), it is easy to integrate ADMs and Rules. 
The integrated tool suite ensures that the behavior of 
domain models defined in a DSML is simulated 
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according to their “reference semantics” by 
automatically transforming them into AsmL Data 
Models using the transformation rules. 
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Figure 1. A graphical representation for SUC  
                             
We model SUC as structural and behavioral 

compositions. An ASM instance includes an m data 
model, the R rule set and the S dynamic state variables 
updated during runs. The structural composition 
defines relationships among selected elements of 
ADMs using partial maps. In Figure 1, we demonstrate 
semantic composition with two semantic units, SU1 
and SU2. The composed semantics is also represented 
as a 2-tuple <A, R>. The structural composition yields 
the composed ADM A = <AC, ASU1, ASU2, g1, g2 >, 
where g1, g2 are the partial maps between concepts in 
AC, ASU1, and ASU2. 

Behavioral composition is completed by the RC set 
of rules that together with RSU1 and RSU2 form the R 
rule set for the composed semantics. The role of the RC 
set of rules is to receive the possible sets of actions that 
can be offered by the embedded semantic units using 
the Get(…) rules, to restrict these sets according to the 
interactions created by the structural composition and 
to send back selected subset of actions through the 
Run(…) rules to complete their next step. The 
executable actions are represented as partial orders 
above the set of actions.  

 
3. STNSM Overview 

 
TNSM has been developed by General Motors 

Research to specify vehicle motion control (VMC) 
software [6]. To focus on the core ideas of SUC, we 
introduce a simplified TNSM, called STNSM, which 
only includes those modeling constructs that determine 
the core behavioral semantics of TNSM. The full 
semantic specifications can be downloaded from [8]. 

A STNSM model is a synchronous reactive system 
including a set of components communicating through 

event channels and data channels. In each computation 
cycle, a STNSM system is first activated by an 
incoming event; this event is then propagated through 
event channels and activates internal components; the 
reaction of internal components may produce 
additional events; new generated events will continue 
the propagation and activation cycle until conclusion. 
According to the synchrony assumption, a computation 
cycle will be finished before the next incoming event 
triggers a new reaction. 

 

 
Figure 2. A simple STNSM component model 

 
A STNSM component is an FSM-based model. We 

use a simple component model shown in Figure 2 as an 
example to explain the structure and the behavior of 
STNSM components. The component communicates 
with other components through ports, including a 
single input event port (IEP), an output event port 
(OEP), two input data ports (IDP1 and IDP2) and two 
output data ports (ODP1 and ODP2). A component 
also includes an FSM, where transitions are labeled 
with a trigger event, a guard, an output event and set of 
actions. Guards and actions are computational 
functions within the component and receive their input 
data through input data ports. The execution of an 
action (a function) may produce new data, while the 
execution of a guard only returns a Boolean value for 
the true or false evaluation.  

 

 
Figure 3. A simple STNSM system model 
 
A STNSM system consists of a set of components, 

event channels, data channels, an input and an output 
event port, and a set of input and output data ports. 
Figure 3 presents a simple STNSM system model, 
including three components A, B and C. Event 
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channels are represented as dashed lines and data 
channels are shown as concrete lines.  

 
4. Primary Semantic Units Used 

 
In the following section we briefly elaborate the 

primary SUs, FSM-SU and SDF-SU, that we use to 
compose the semantics of, first STNSM Components, 
and then STNSM Systems.  

 
4.1. FSM-SU Specification 
 

  The specification contains two parts: an ADM 
AFSM-SU and Operations and Transformation Rules  
RFSM-SU on the data structures defined in AFSM-SU. The 
AsmL abstract class FSM prescribes the top-level 
structure of a FSM. All the abstract members of FSM 
are further specified by a concrete FSM, which is an 
instance of the Abstract State Model. (see detailed 
examples in [3]) 

structure Event 
  eventType as String 
class State 
  initial    as Boolean 
  var active as Boolean = false 
class Transition 
abstract class FSM 
  abstract property states           as Set of State 
    get 
  abstract property transitions      as Set of Transition 
    get 
  abstract property outTransitions   as Map of  
    <State, Set of Transition> 
    get 
  abstract property dstState as Map of <Transition, State> 
    get 
  abstract property triggerEventType as Map of  
    <Transition, String> 
    get 
  abstract property outputEventType  as Map of  
    <Transition, String> 
    get 

The behavioral semantics of FSM-SU is specified 
as a set of AsmL rules. The rule Run specifies the top-
level system reaction of a FSM when it receives an 
event. Note that the ‘?’ modifier after Event means the 
return from the Run rule may be either an event or an 
AsmL null value. 

abstract class FSM 
  Run (e as Event) as Event? 
    step 
      let CS as State = GetCurrentState () 
    step 
      let enabledTs as Set of Transition = {t | t in  
        outTransitions (CS) where e.eventType =  
        triggerEventType(t)} 
    step 
      if Size (enabledTs) >= 1 then 
        choose t in enabledTs 
          step 
            CS.active := false 
          step 
            dstState(t).active := true 
          step 
            if t in me.outputEventType then 
              return Event(outputEventType(t)) 
            else 
              return null 
      else 
        return null 

 
 

 
4.2. SDF-SU Specification  

 
The AsmL specification of the ADM ASDF-SU is 

shown below. Token is defined as an AsmL structure 
to package data using the AsmL construct case. Port 
and Channel are defined as first-class types. The 
Boolean attribute exist of a port indicates whether the 
port has a valid data token. When all the input ports of 
a node have valid data tokens, the node is enabled to 
fire. In the specification, Fire is an abstract function, 
which will be overridden by a concrete node with a 
computational function. The AsmL abstract class SDF 
captures the top-level structure of a model. 

structure Value 
  case IntValue 
    v as Integer 
  case DoubleValue 
    v as Double 
  case BoolValue 
    v as Boolean 
structure Token 
  value as Value? 
class Port 
  var token as Token   = Token (null) 
  var exist as Boolean = false 
class Channel 
  srcPort as Port 
  dstPort as Port 
abstract class Node 
  abstract property inputPorts  as Seq of Port 
    get 
  abstract property outputPorts as Seq of Port 
    get 
  abstract Fire () 
abstract class SDF 
  abstract property nodes       as Set of Node 
    get 
  abstract property channels    as Set of Channel 
    get 
  abstract property inputPorts  as Seq of Port 
    get 
  abstract property outputPorts as Seq of Port 
    get 

The operational rule Run specifies the steps it takes 
to execute a set of nodes. This rule can be considered 
as a composition interface for SDF-SU. The rule non-
deterministically chooses an enabled node from the set 
of enabled nodes (returned by the operational rule 
GetEnabledNodes) and fires it. The execution of a 
node consumes the data tokens in all input ports of the 
node and produce tokens to all output ports as well. An 
error is reported if there are no enabled nodes in the set 
while the set is not empty. 

abstract class SDF 
  Run (ns as Set of Node) 
    step while Size(ns) <> 0  
      choose n in ns where n in GetEnabledNodes () 
        remove n from ns 
        Fire (n) 
      ifnone  
        error ("Some Nodes are not enabled to fire.") 

 
5. Semantic Specification for STNSM 
Components 
 

The behaviors of individual STNSM components 
can be divided into two different behavioral aspects: 
the FSM-based behaviors expressing reactions to 
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events and the SDF-based behaviors controlling the 
execution of computational functions (actions and 
guards). In this section, we formally specify the 
behavioral semantics of STNSM components as the 
composition of two primary semantic units: FSM-SU 
and SDF-SU. The compositional semantics 
specification consists of two parts: (1) an ADM 
defining the structural composition <AC, AFSM-SU, ASDF-

SU, g1, g2>, where g1: AC→AFSM-SU and g2: AC→ASDF-SU 
are structural relation maps; and (2) Operations and 
Transformation Rules specifying the behavioral 
composition <RC , RFSM-SU , RSDF-SU >. 

 

 
Figure 4. A compositional structure of the 

STNSM component shown in Figure 2. 
 
5.1. Structural Composition  

 
The structural composition defines mapping from 

elements in the ADM of the composed SU to elements 
in FSM-SU and those in SDF-SU. Figure 4 shows the 
role of FSM-SU and SDF-SU in the STNSM 
component model by restructuring the example in 
Figure 2. In the modified structure, the FSM model 
controls the event-related behaviors, while the SDF 
model takes charge of the data-related computations. 
Comparing Figure 2 and 4, we can find that the overall 
structure of the FSM model closely matches that of the 
original STNSM component, except for events, guards 
and actions. The trigger events and the output events in 
the FSM model are renamed. The guards and actions 
are represented as nodes in the SDF model. The 
relationships between the FSM model and the SDF 
model are specified by two maps: GuardMap and 
ActionMap. In this section, we only briefly explain 
how these two maps help to relate the FSM model with 
the SDF model.  

The new compositional structure is built in a way 
that each transition in the original component is 
decomposed into three parts: a transition in the FSM 
model, a node representing the guard and a node 

representing the action in the SDF model. In the 
original component, a transition can be unambiguously 
located by the combination of the source state, the 
trigger event, and the guard. In the compositional 
structure, the information can be expressed by a 3-tuple 
(s, e, n), where s refers a state in the FSM model; e is a 
local trigger event in the FSM model; and n represents 
a node in the SDF model. When a component receives 
an event, this event is a global event and will not be 
directly forwarded to the FSM model. The GuardMap 
maps this global event to a set of 3-tuples, each tuple 
referring to a transition in the original component 
whose trigger event matches this global event. Using 
the example in Figure 2 again, the event α is the trigger 
event only for the transition T1. In the compositional 
structure as shown in Figure 4, the T1 transition is 
decomposed into the t1 transition in the FSM model, 
whose source state is s and trigger event is e1in, and 
the guard1 and action1 node in the SDF model. As a 
result, GuardMap assigns the event α to the set         
{(s, e1in, guard1)}. 

class EventPort 
  var evnt   as Event  = Event ("") 
  var exist  as Boolean = false 
abstract class Component 
  abstract property inPort    as EventPort 
    get 
  abstract property outPort   as EventPort 
    get 
  abstract property GuardMap  as Map of <String,  
    Set of(String, String, Node?)> 
    get 
  abstract property ActionMap as Map of <String,  
    (Set of Node, String?)> 
    get 
  abstract property fsm as FSM 
    get 
  abstract property sdf as SDF 
    get 

 
5.2. Behavioral Composition  

 
In essence, the behavioral composition specifies the 

rules RC, which is akin to a component-level controller 
(or scheduler) that orchestrates the executions and 
interactions of the FSM model and the SDF model.  

The execution of a transition in the original STNSM 
component can be decomposed into a three-step 
process: (1) the evaluation of the guard functions for 
all outgoing transitions from the current state as nodes 
in the SDF model; (2) the selection of an enabled 
transition in the FSM model; and (3) the execution of 
actions of the transition as nodes in the SDF model. 
The three steps are related to each other by the maps 
GuardMap and ActionMap. The output event produced 
by the execution of a transition in the FSM model is a 
local event. ActionMap maps it to a 2-tuple ({n}, e), 
where {n} refers to a set of nodes (actions) in the SDF 
model and e refers to a global output event that will be 
propagated out of the component. For instance, the 
execution of the t2 transition of the FSM model in 
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Figure 4 generates a local event e2out. Since the t2 
transition corresponds to the T2 transition in the 
original component (Figure 2), which is attached with 
actions, action2, action3 and action4, and an output 
event v, the ActionMap maps the local event e1out to a 
2-tuple ({action2, action3, action4}, v) accordingly. 

The rules verbalized above are specified in AsmL as 
Operations and Transition Rules. The operational rule 
Run of Component specifies the top-level component 
operations as a sequence of updates. The rule first 
consumes the event in the port and checks whether this 
event triggers further updates in the component. If the 
event does, the rule MapToLocalInputEvent returns the 
corresponding local event used to trigger the FSM 
model; if not, a null value is returned and the reaction 
is completed. If a valid local event is returned, it 
activates the FSM model. The reaction of the FSM 
model returns a local output event. If the STNSM 
component produces an output event in this reaction, 
the rule MapToGlobalOutputEvent maps the local 
event to the global output even, which is then stored in 
the output port of the component. 

abstract class Component 
  Run () 
    require inPort.exist 
    step 
      inPort.exist := false       
      let localEvent as Event? =  
        MapToLocalInputEvent (inPort.evnt) 
    step 
      if localEvent <> null then 
        step let e as Event? = fsm.Run (localEvent) 
        step 
          let globalEvent as Event?=MapToGlobalOutputEvent(e) 
        step 
          if globalEvent <> null then 
           outPort.evnt := globalEvent 
           outPort.exist := true 

The semantics of STNSM components is defined as 
the composition of the two semantic units: FSM-SU 
and SDF-SU. We observe that this behavioral 
semantics specification is not limited to the STNSM 
components. It actually specifies the semantics of a 
common behavioral category that captures the reactive 
computation behaviors. Therefore, we can consider the 
semantic specification for STNSM components as a 
new derived semantic unit, called Action Automaton 
Semantic Unit (AA-SU). We leverage this AA-SU in 
the following section to compositionally specify the 
semantics of STNSM Systems. 

 
6. Semantic Specification for STNSM 
Systems 
 

The semantics of STNSM systems is defined as the 
composition of AA-SU and SDF-SU. The semantic 
specification for STNSM includes: (1) an ADM 
defining the structural composition <AC, AAA-SU, ASDF-

SU, g1, g2>, where g1: AC→AAA-SU, and g2: AC→ASDF-SU 
are structural relation maps; and (2) Operations and 

Transformation Rules specifying the behavioral 
composition <RC , RAA-SU , RSDF-SU >. 

 

 
Figure 5. The compositional structure of the 
STNSM system originally shown in Figure 3 

 
6.1. Structural Composition  

 
The structural composition defines the 

communication relationships among components, in 
terms of an event flow and a data flow. As it is shown 
in Figure 5, we reuse again the SDF-SU to model the 
interaction semantics for the data flow. It is important 
to note that due to the integration with the FSM 
sections, always only a subset of the SDF nodes is 
involved in a reaction of the STNSM system. Figure 5 
presents the role of the AA-SU, SDF-SU and the event 
flow interactions in the STNSM system model by 
restructuring the example in Figure 3. This new 
structure gives a much clearer expression for the 
control dependency among components and the data 
dependency among computational functions (actions 
and guards). 

class EventChannel 
  id      as String 
  srcPort as EventPort 
  dstPort as EventPort 
abstract class System 
  abstract property inPort     as EventPort 
    get 
  abstract property outPort    as EventPort 
    get 
  abstract property components as Set of Component 
    get 
  abstract property channels   as Set of EventChannel 
    get 
  abstract property sdf        as SDF 
    get 

The AsmL abstract class System captures the top-
level structure of a STNSM system. The abstract 
property components is a set holding all components in 
a system. The control dependency among components 
is expressed by a set of event channels contained in the 
abstract property channels. The data dependency 
among computational functions is described by a SDF 
model. Each component has a reference to this SDF 
model. The relationship between a component and the 
SDF model is defined by the AA-SU (e.g. the abstract 
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property GuardMap and ActionMap in the class 
Component). 

 
6.2. Behavioral Composition  

 
The behavioral composition for the STNSM system 

defines a system-level controller (or scheduler) that 
controls the executions and the order of the executions 
of components, event channels and the SDF model. 
The operational rule Runt of System specifies the top-
level system operations as a sequence of updates. 
Firstly, the rule propagates the event in the input event 
port of the system along all the connected event 
channels to the destination ports referring to the input 
event ports of components. In the meantime, the 
operational rule Initialize, defined in the SDF-SU, 
propagates the data tokens in the input ports of the 
SDF model along the connected data channels to the 
destination ports that refer to the input ports of nodes. 
The next step is to keep running until the operations 
inside the step cause no further state updates in the 
ASM (fixpoint). 

abstract class System 
  Run () 
    require inPort.exist 
    step 
      forall c in me.channels where c.srcPort.exist 
        c.dstPort.evnt := c.srcPort.evnt 
        c.srcPort.exist := false 
        c.dstPort.exist := true 
      sdf.Initialize () 
    step until fixpoint 
      step 
        forall comp in me.components  
          where comp.inPort.exist 
          comp.Run () 
      step 
        forall c in me.channels where c.srcPort.exist 
          c.dstPort.evnt := c.srcPort.evnt 
          c.dstPort.exist := true 
          c.srcPort.exist := false 
    step 
      sdf.ClearPorts () 

Within the loop, the rule first activates all the 
components who receive an event. The reactions of 
these components then produce new events. If new 
events are produced, the rule propagates them to the 
destination components and continues the loop; 
otherwise, the loop is stopped. Finally, the rule 
ClearPorts defined in SDF-SU is utilized to clear all 
the input data ports in the SDF model because the 
STNSM system does not store the data generated in the 
last computation cycle. 

This behavioral semantics is actually not unique to 
STNSM. Rather, it captures the common behavior of 
event-driven synchronous reactive systems. Therefore, 
we can also consider the semantic specification for 
STNSM as a new derived SU for event-driven 
synchronous reactive systems. Details of the 
specification clearly demonstrates the similarities 
between the semantics of STNSM and well known 
event-driven synchronous reactive systems and opens 
up the possibility of utilizing a rich variety of 

analytical techniques that have been developed in that 
domain.  

 
7. Conclusion 

 
Compositional semantic specification is a necessary 

step for making DSMLs semantically precise and 
practical. The proposed approach builds on a large 
body of work on ASM [4] [7] and on our earlier work 
on the semantic anchoring methodology [2] [3]. As a 
future step we will continue the construction of a 
library of primary semantic units and will move toward 
increased automation in semantic unit composition. 
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