
A Case Study on Semantic Unit Composition

Kai Chen1, Janos Sztipanovits2 and Sandeep Neema2

1Motorola Labs, Schaumburg, IL, 60196, USA
Kai.chen@motorola.com

2Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, 37205, USA
{Janos.sztipanovits, sandeep.neema}@vanderbilt.edu

Abstract

In previous work we have discussed a semantic
anchoring framework that enables the semantic
specification of Domain-Specific Modeling Languages
by specifying semantic anchoring rules to predefined
semantic units. This framework is further extended to
support heterogeneous systems by developing a method
for the composition of semantic units. In this paper, we
explain the semantic unit composition through a case
study.

1. Introduction

In [2] [3], we have proposed a semantic anchoring
framework (SAF) for Domain-Specific Modeling
Languages (DSMLs) [1]] semantic specification. The
framework includes a set of well-defined “semantic
units” (SUs) that capture the behavioral semantics of
basic behavioral categories using Abstract State
Machines (ASM) [4] [7] as an underlying formal
framework. The semantics of a DSML is defined by
specifying the transformation rules between the
abstract syntax metamodel of the DSML and that of a
selected SU. Furthermore, we extend the SAF to
address the impact of system heterogeneity by
developing a method to specify DSML semantics as
the composition of SUs [5]. In this paper, we explain
semantic unit composition (SUC) in details using an
industrial strength DSML – TNSM [6] as a case study.

The organization of this paper is the following:
Section 2 introduces the core ideas of SUC. In Section
3, 4, 5 and 6 we explain the SUC in details using a case
study. Our conclusion is in section 7.

2. Semantic Unit Composition

In the SAF, we define a finite set of SUs, which

capture the semantics of basic behavioral and
interaction categories. If the semantics of a DSML can

be directly anchored to one of these basic categories,
its semantics can be defined by simply specifying the
model transformation rules between the metamodel of
the DSML and the Abstract Data Model (ADM) of the
SU [2] [3]. However, in heterogeneous systems, the
semantics is not always fully captured by a predefined
SU. If the semantics is specified from scratch it is not
only expensive but we loose the advantages of
anchoring the semantics to (a set of) common and well-
established SUs. This is not only loosing reusability of
previous efforts, but has negative consequences on our
ability to relate semantics of DSMLs to each other and
to guide language designers to use well understood and
safe behavioral and interaction semantic “building
blocks” as well.

Our proposed solution is to define semantics for
heterogeneous DSMLs as the composition of semantic
units. If the composed semantics specifies a behavior
which is frequently used in system design, the resulting
semantics can be considered a derived SU, which is
built on primary SUs, and could be offered up as one
of the set of SUs for future anchoring efforts. Note that
primary SUs refer to the SUs that capture the semantics
of the basic behavioral categories, such as Finite State
Machine, Timed Automata and Hybrid Automata.

Mathematically, a SU specification can be
represented as a 2-tuple <A, R>, where A is an ADM
specifying the abstract syntax of the SU and R
represents a set of Operations and Transition Rules.
We use M = Ι (A) to denote the set of all instances of
A. Then, each m ∈ M is a well formed Data Model
defined by the A and R specifies the behavior of each m
∈ M. The behavior in ASM is modeled by a sequence
of steps, where a Step in a given state includes the
execution simultaneously of all Rules whose guard
conditions are true [4]. Since ASM states are
mathematical structures (sets with basic operations and
predicates), it is easy to integrate ADMs and Rules.
The integrated tool suite ensures that the behavior of
domain models defined in a DSML is simulated

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

according to their “reference semantics” by
automatically transforming them into AsmL Data
Models using the transformation rules.

RC

SC

m ∈ MC = I(AC)

RSU1

SSU1

mSU1 ∈ MSU1 =
= I(ASU1)

RSU2

SSU1

mSU2 ∈ MSU2 =
= I(ASU2)

g1 : AC → ASU1 g2 : AC → ASU2

Get_()

Run_()

Get_()

Run_()

SU1 SU2

CS = <A, R>
A = <AC ,ASU1, ASU2, g1, g2>
R = <RC,RSU1,RSU2>

Figure 1. A graphical representation for SUC

We model SUC as structural and behavioral

compositions. An ASM instance includes an m data
model, the R rule set and the S dynamic state variables
updated during runs. The structural composition
defines relationships among selected elements of
ADMs using partial maps. In Figure 1, we demonstrate
semantic composition with two semantic units, SU1
and SU2. The composed semantics is also represented
as a 2-tuple <A, R>. The structural composition yields
the composed ADM A = <AC, ASU1, ASU2, g1, g2 >,
where g1, g2 are the partial maps between concepts in
AC, ASU1, and ASU2.

Behavioral composition is completed by the RC set
of rules that together with RSU1 and RSU2 form the R
rule set for the composed semantics. The role of the RC
set of rules is to receive the possible sets of actions that
can be offered by the embedded semantic units using
the Get(…) rules, to restrict these sets according to the
interactions created by the structural composition and
to send back selected subset of actions through the
Run(…) rules to complete their next step. The
executable actions are represented as partial orders
above the set of actions.

3. STNSM Overview

TNSM has been developed by General Motors

Research to specify vehicle motion control (VMC)
software [6]. To focus on the core ideas of SUC, we
introduce a simplified TNSM, called STNSM, which
only includes those modeling constructs that determine
the core behavioral semantics of TNSM. The full
semantic specifications can be downloaded from [8].

A STNSM model is a synchronous reactive system
including a set of components communicating through

event channels and data channels. In each computation
cycle, a STNSM system is first activated by an
incoming event; this event is then propagated through
event channels and activates internal components; the
reaction of internal components may produce
additional events; new generated events will continue
the propagation and activation cycle until conclusion.
According to the synchrony assumption, a computation
cycle will be finished before the next incoming event
triggers a new reaction.

Figure 2. A simple STNSM component model

A STNSM component is an FSM-based model. We

use a simple component model shown in Figure 2 as an
example to explain the structure and the behavior of
STNSM components. The component communicates
with other components through ports, including a
single input event port (IEP), an output event port
(OEP), two input data ports (IDP1 and IDP2) and two
output data ports (ODP1 and ODP2). A component
also includes an FSM, where transitions are labeled
with a trigger event, a guard, an output event and set of
actions. Guards and actions are computational
functions within the component and receive their input
data through input data ports. The execution of an
action (a function) may produce new data, while the
execution of a guard only returns a Boolean value for
the true or false evaluation.

Figure 3. A simple STNSM system model

A STNSM system consists of a set of components,

event channels, data channels, an input and an output
event port, and a set of input and output data ports.
Figure 3 presents a simple STNSM system model,
including three components A, B and C. Event

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

channels are represented as dashed lines and data
channels are shown as concrete lines.

4. Primary Semantic Units Used

In the following section we briefly elaborate the

primary SUs, FSM-SU and SDF-SU, that we use to
compose the semantics of, first STNSM Components,
and then STNSM Systems.

4.1. FSM-SU Specification

 The specification contains two parts: an ADM
AFSM-SU and Operations and Transformation Rules
RFSM-SU on the data structures defined in AFSM-SU. The
AsmL abstract class FSM prescribes the top-level
structure of a FSM. All the abstract members of FSM
are further specified by a concrete FSM, which is an
instance of the Abstract State Model. (see detailed
examples in [3])

structure Event
 eventType as String
class State
 initial as Boolean
 var active as Boolean = false
class Transition
abstract class FSM
 abstract property states as Set of State
 get
 abstract property transitions as Set of Transition
 get
 abstract property outTransitions as Map of
 <State, Set of Transition>
 get
 abstract property dstState as Map of <Transition, State>
 get
 abstract property triggerEventType as Map of
 <Transition, String>
 get
 abstract property outputEventType as Map of
 <Transition, String>
 get

The behavioral semantics of FSM-SU is specified
as a set of AsmL rules. The rule Run specifies the top-
level system reaction of a FSM when it receives an
event. Note that the ‘?’ modifier after Event means the
return from the Run rule may be either an event or an
AsmL null value.

abstract class FSM
 Run (e as Event) as Event?
 step
 let CS as State = GetCurrentState ()
 step
 let enabledTs as Set of Transition = {t | t in
 outTransitions (CS) where e.eventType =
 triggerEventType(t)}
 step
 if Size (enabledTs) >= 1 then
 choose t in enabledTs
 step
 CS.active := false
 step
 dstState(t).active := true
 step
 if t in me.outputEventType then
 return Event(outputEventType(t))
 else
 return null
 else
 return null

4.2. SDF-SU Specification

The AsmL specification of the ADM ASDF-SU is

shown below. Token is defined as an AsmL structure
to package data using the AsmL construct case. Port
and Channel are defined as first-class types. The
Boolean attribute exist of a port indicates whether the
port has a valid data token. When all the input ports of
a node have valid data tokens, the node is enabled to
fire. In the specification, Fire is an abstract function,
which will be overridden by a concrete node with a
computational function. The AsmL abstract class SDF
captures the top-level structure of a model.

structure Value
 case IntValue
 v as Integer
 case DoubleValue
 v as Double
 case BoolValue
 v as Boolean
structure Token
 value as Value?
class Port
 var token as Token = Token (null)
 var exist as Boolean = false
class Channel
 srcPort as Port
 dstPort as Port
abstract class Node
 abstract property inputPorts as Seq of Port
 get
 abstract property outputPorts as Seq of Port
 get
 abstract Fire ()
abstract class SDF
 abstract property nodes as Set of Node
 get
 abstract property channels as Set of Channel
 get
 abstract property inputPorts as Seq of Port
 get
 abstract property outputPorts as Seq of Port
 get

The operational rule Run specifies the steps it takes
to execute a set of nodes. This rule can be considered
as a composition interface for SDF-SU. The rule non-
deterministically chooses an enabled node from the set
of enabled nodes (returned by the operational rule
GetEnabledNodes) and fires it. The execution of a
node consumes the data tokens in all input ports of the
node and produce tokens to all output ports as well. An
error is reported if there are no enabled nodes in the set
while the set is not empty.

abstract class SDF
 Run (ns as Set of Node)
 step while Size(ns) <> 0
 choose n in ns where n in GetEnabledNodes ()
 remove n from ns
 Fire (n)
 ifnone
 error ("Some Nodes are not enabled to fire.")

5. Semantic Specification for STNSM
Components

The behaviors of individual STNSM components
can be divided into two different behavioral aspects:
the FSM-based behaviors expressing reactions to

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

events and the SDF-based behaviors controlling the
execution of computational functions (actions and
guards). In this section, we formally specify the
behavioral semantics of STNSM components as the
composition of two primary semantic units: FSM-SU
and SDF-SU. The compositional semantics
specification consists of two parts: (1) an ADM
defining the structural composition <AC, AFSM-SU, ASDF-

SU, g1, g2>, where g1: AC→AFSM-SU and g2: AC→ASDF-SU
are structural relation maps; and (2) Operations and
Transformation Rules specifying the behavioral
composition <RC , RFSM-SU , RSDF-SU >.

Figure 4. A compositional structure of the

STNSM component shown in Figure 2.

5.1. Structural Composition

The structural composition defines mapping from

elements in the ADM of the composed SU to elements
in FSM-SU and those in SDF-SU. Figure 4 shows the
role of FSM-SU and SDF-SU in the STNSM
component model by restructuring the example in
Figure 2. In the modified structure, the FSM model
controls the event-related behaviors, while the SDF
model takes charge of the data-related computations.
Comparing Figure 2 and 4, we can find that the overall
structure of the FSM model closely matches that of the
original STNSM component, except for events, guards
and actions. The trigger events and the output events in
the FSM model are renamed. The guards and actions
are represented as nodes in the SDF model. The
relationships between the FSM model and the SDF
model are specified by two maps: GuardMap and
ActionMap. In this section, we only briefly explain
how these two maps help to relate the FSM model with
the SDF model.

The new compositional structure is built in a way
that each transition in the original component is
decomposed into three parts: a transition in the FSM
model, a node representing the guard and a node

representing the action in the SDF model. In the
original component, a transition can be unambiguously
located by the combination of the source state, the
trigger event, and the guard. In the compositional
structure, the information can be expressed by a 3-tuple
(s, e, n), where s refers a state in the FSM model; e is a
local trigger event in the FSM model; and n represents
a node in the SDF model. When a component receives
an event, this event is a global event and will not be
directly forwarded to the FSM model. The GuardMap
maps this global event to a set of 3-tuples, each tuple
referring to a transition in the original component
whose trigger event matches this global event. Using
the example in Figure 2 again, the event α is the trigger
event only for the transition T1. In the compositional
structure as shown in Figure 4, the T1 transition is
decomposed into the t1 transition in the FSM model,
whose source state is s and trigger event is e1in, and
the guard1 and action1 node in the SDF model. As a
result, GuardMap assigns the event α to the set
{(s, e1in, guard1)}.

class EventPort
 var evnt as Event = Event ("")
 var exist as Boolean = false
abstract class Component
 abstract property inPort as EventPort
 get
 abstract property outPort as EventPort
 get
 abstract property GuardMap as Map of <String,
 Set of(String, String, Node?)>
 get
 abstract property ActionMap as Map of <String,
 (Set of Node, String?)>
 get
 abstract property fsm as FSM
 get
 abstract property sdf as SDF
 get

5.2. Behavioral Composition

In essence, the behavioral composition specifies the

rules RC, which is akin to a component-level controller
(or scheduler) that orchestrates the executions and
interactions of the FSM model and the SDF model.

The execution of a transition in the original STNSM
component can be decomposed into a three-step
process: (1) the evaluation of the guard functions for
all outgoing transitions from the current state as nodes
in the SDF model; (2) the selection of an enabled
transition in the FSM model; and (3) the execution of
actions of the transition as nodes in the SDF model.
The three steps are related to each other by the maps
GuardMap and ActionMap. The output event produced
by the execution of a transition in the FSM model is a
local event. ActionMap maps it to a 2-tuple ({n}, e),
where {n} refers to a set of nodes (actions) in the SDF
model and e refers to a global output event that will be
propagated out of the component. For instance, the
execution of the t2 transition of the FSM model in

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Figure 4 generates a local event e2out. Since the t2
transition corresponds to the T2 transition in the
original component (Figure 2), which is attached with
actions, action2, action3 and action4, and an output
event v, the ActionMap maps the local event e1out to a
2-tuple ({action2, action3, action4}, v) accordingly.

The rules verbalized above are specified in AsmL as
Operations and Transition Rules. The operational rule
Run of Component specifies the top-level component
operations as a sequence of updates. The rule first
consumes the event in the port and checks whether this
event triggers further updates in the component. If the
event does, the rule MapToLocalInputEvent returns the
corresponding local event used to trigger the FSM
model; if not, a null value is returned and the reaction
is completed. If a valid local event is returned, it
activates the FSM model. The reaction of the FSM
model returns a local output event. If the STNSM
component produces an output event in this reaction,
the rule MapToGlobalOutputEvent maps the local
event to the global output even, which is then stored in
the output port of the component.

abstract class Component
 Run ()
 require inPort.exist
 step
 inPort.exist := false
 let localEvent as Event? =
 MapToLocalInputEvent (inPort.evnt)
 step
 if localEvent <> null then
 step let e as Event? = fsm.Run (localEvent)
 step
 let globalEvent as Event?=MapToGlobalOutputEvent(e)
 step
 if globalEvent <> null then
 outPort.evnt := globalEvent
 outPort.exist := true

The semantics of STNSM components is defined as
the composition of the two semantic units: FSM-SU
and SDF-SU. We observe that this behavioral
semantics specification is not limited to the STNSM
components. It actually specifies the semantics of a
common behavioral category that captures the reactive
computation behaviors. Therefore, we can consider the
semantic specification for STNSM components as a
new derived semantic unit, called Action Automaton
Semantic Unit (AA-SU). We leverage this AA-SU in
the following section to compositionally specify the
semantics of STNSM Systems.

6. Semantic Specification for STNSM
Systems

The semantics of STNSM systems is defined as the
composition of AA-SU and SDF-SU. The semantic
specification for STNSM includes: (1) an ADM
defining the structural composition <AC, AAA-SU, ASDF-

SU, g1, g2>, where g1: AC→AAA-SU, and g2: AC→ASDF-SU
are structural relation maps; and (2) Operations and

Transformation Rules specifying the behavioral
composition <RC , RAA-SU , RSDF-SU >.

Figure 5. The compositional structure of the
STNSM system originally shown in Figure 3

6.1. Structural Composition

The structural composition defines the

communication relationships among components, in
terms of an event flow and a data flow. As it is shown
in Figure 5, we reuse again the SDF-SU to model the
interaction semantics for the data flow. It is important
to note that due to the integration with the FSM
sections, always only a subset of the SDF nodes is
involved in a reaction of the STNSM system. Figure 5
presents the role of the AA-SU, SDF-SU and the event
flow interactions in the STNSM system model by
restructuring the example in Figure 3. This new
structure gives a much clearer expression for the
control dependency among components and the data
dependency among computational functions (actions
and guards).

class EventChannel
 id as String
 srcPort as EventPort
 dstPort as EventPort
abstract class System
 abstract property inPort as EventPort
 get
 abstract property outPort as EventPort
 get
 abstract property components as Set of Component
 get
 abstract property channels as Set of EventChannel
 get
 abstract property sdf as SDF
 get

The AsmL abstract class System captures the top-
level structure of a STNSM system. The abstract
property components is a set holding all components in
a system. The control dependency among components
is expressed by a set of event channels contained in the
abstract property channels. The data dependency
among computational functions is described by a SDF
model. Each component has a reference to this SDF
model. The relationship between a component and the
SDF model is defined by the AA-SU (e.g. the abstract

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

property GuardMap and ActionMap in the class
Component).

6.2. Behavioral Composition

The behavioral composition for the STNSM system

defines a system-level controller (or scheduler) that
controls the executions and the order of the executions
of components, event channels and the SDF model.
The operational rule Runt of System specifies the top-
level system operations as a sequence of updates.
Firstly, the rule propagates the event in the input event
port of the system along all the connected event
channels to the destination ports referring to the input
event ports of components. In the meantime, the
operational rule Initialize, defined in the SDF-SU,
propagates the data tokens in the input ports of the
SDF model along the connected data channels to the
destination ports that refer to the input ports of nodes.
The next step is to keep running until the operations
inside the step cause no further state updates in the
ASM (fixpoint).

abstract class System
 Run ()
 require inPort.exist
 step
 forall c in me.channels where c.srcPort.exist
 c.dstPort.evnt := c.srcPort.evnt
 c.srcPort.exist := false
 c.dstPort.exist := true
 sdf.Initialize ()
 step until fixpoint
 step
 forall comp in me.components
 where comp.inPort.exist
 comp.Run ()
 step
 forall c in me.channels where c.srcPort.exist
 c.dstPort.evnt := c.srcPort.evnt
 c.dstPort.exist := true
 c.srcPort.exist := false
 step
 sdf.ClearPorts ()

Within the loop, the rule first activates all the
components who receive an event. The reactions of
these components then produce new events. If new
events are produced, the rule propagates them to the
destination components and continues the loop;
otherwise, the loop is stopped. Finally, the rule
ClearPorts defined in SDF-SU is utilized to clear all
the input data ports in the SDF model because the
STNSM system does not store the data generated in the
last computation cycle.

This behavioral semantics is actually not unique to
STNSM. Rather, it captures the common behavior of
event-driven synchronous reactive systems. Therefore,
we can also consider the semantic specification for
STNSM as a new derived SU for event-driven
synchronous reactive systems. Details of the
specification clearly demonstrates the similarities
between the semantics of STNSM and well known
event-driven synchronous reactive systems and opens
up the possibility of utilizing a rich variety of

analytical techniques that have been developed in that
domain.

7. Conclusion

Compositional semantic specification is a necessary

step for making DSMLs semantically precise and
practical. The proposed approach builds on a large
body of work on ASM [4] [7] and on our earlier work
on the semantic anchoring methodology [2] [3]. As a
future step we will continue the construction of a
library of primary semantic units and will move toward
increased automation in semantic unit composition.

9. References

[1] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty.
Model Integrated development of embedded software.
Proceedings of the IEEE, volume 91, pages 145–164, 2003.

[2] Chen K., Sztipanovits J., Neema S., Emerson M.,
Abdelwahed S. Toward a Semantic Anchoring Infrastructure
for Domain-Specific Modeling Languages, In Proceedings of
the Fifth ACM International Conference on Embedded
Software (EMSOFT’05), pages 35-44, New Jersey,
September, 2005.

[3] Chen K., Sztipanovits J., Abdelwahed S., Jackson E.
Semantic Anchoring with Model Transformations. In
Proceedings of European Conference on Model Driven
Architecture -Foundations and Applications (ECMDA-FA),
Nuremberg, Germany, November, 2005. Lecture Notes in
Computer Science, vol. 3748. pages 115-129.

[4] E. Boerger and R. Staerk. Abstract State Machines: A
Method for HighLevel System Design and Analysis. Springer,
2003.

[5] Chen K., Sztipanovits J. and Neema S. Compositional
Specification of Behavioral Semantics. Accepted by
Proceedings of Design, Automation, and Test in Europe
2007, Nice, France, April, 2007.

[6] S. Birla, S. Wang, S. Neema, and T. Saxena. Addressing
cross-tool semantic ambiguities in behavior modeling for
vehicle motion control. In Automotive Software Workshop
2006, San Diego, CA, April 2006.

[7] The Abstract State Machine Language.
www.research.microsoft.com/fse/asml..

[8] The Semantic Anchoring Tool Suite.
www.isis.vanderbilt.edu/SAT.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

