
MISE 2007

Panel
Brian Berenbach, Jeff Gray,

Mats Heimdahl, Jeff Kramer

Abstraction ChallengesAbstraction Challenges

MISE 2007

Abstraction important in Software Engineering

“Once you realize that computing is all about
constructing, manipulating, and reasoning about
abstractions, it becomes clear that an important
prerequisite for writing (good) computer
programs is the ability to handle abstractions in a
precise manner.”

Keith Devlin CACM Sept.2003

Abstraction is fundamental to Engineering in
general, and to Software Engineering in
particular !

MISE 2007

Panel focus

Modeling’s advantages are realized through
abstraction mechanisms, such as the ability to
model the essential characteristics of an
application within the problem space by removing
concerns such as platform dependencies that
belong in the technical solution space.

However, there is still much work to be done with
respect to improving abstraction within modeling
languages …

MISE 2007

Abstraction?

the act of withdrawing or removing something

the act or process of leaving out of consideration one
or more properties of a complex object so as to attend
to others

a general concept formed by extracting common
features from specific examples

the process of formulating general concepts by
abstracting common properties of instances

=> generalisation (core or essence)

=> Remove detail (simplify) and focus (selection)

MISE 2007

Models and Modelling?

A model is a description from which detail
has been removed in a systematic manner
and for a particular purpose.

A simplification of reality intended to
promote understanding.

Models are the most important engineering
tool; they allow us to understand and
analyse large and complex problems.

MISE 2007

Questions

For the task at hand, how is the "right" level of
abstraction selected?
What heuristics can be used to decide what
concepts should be left out of a modeling
language?

How can we measure, test, and teach
abstraction skills suitable for modelling?

MISE 2007

More Questions

To what extent to do domain-specific modeling
language approaches provide mechanisms for
extending modeling languages with support for new
abstractions?
How do domain-specific modeling languages offer
advantages over UML; likewise, what advantages
remain in using UML over customized modeling
languages?

In terms of providing the best constructs for
abstraction in modeling languages, what can be
learned from decades of programming language
design (if anything)?

MISE 2007

And yet another Question

What are examples of cases where the LACK of
abstraction in modeling hindered a project?

What was missing in the modeling language and how
can the language be extended to address new
constructions for the abstractions needed for
these examples?

MISE 2007

Questions

For the task at hand, how is the "right" level
of abstraction selected?
What heuristics can be used to decide what
concepts should be left out of a modeling
language?

Properties of interest – “fit for purpose”
support for analysis and reasoning
permit you to frame questions of interest
appropriate for the particular phase in

software development
Not easy…!

MISE 2007

Ockam’s Razor

William of Ockam (1285) formulated the
famous “Rule of the Razor”:

Entia non sunt multiplicanda sine
necessitate.

Entities should not be multiplied without
necessity.

In other words a model should be as simple as
possible, but no simpler - it should discard
elements of no interest.
“Fit for purpose”.

MISE 2007

Questions

How can we measure, test, and teach
abstraction skills suitable for modelling?

Cognitive development provides some guidelines
Tests for Formal Operational Stage
Have been studies.
None exist which focus specifically on

abstraction skills

Potential benefit by improving student selection,
checking progress, checking education
effectiveness, …

MISE 2007

If you are interested in more …..

Is abstraction the key to computing?
Communications of the ACM
Volume 50 , Issue 4 (April 2007), Pages: 36-42

Cognitive Development

Jean Piaget’s fours stages of cognitive development:

1st & 2nd: sensorimotor and preoperational (0-7yrs)

3rd stage: concrete operational thought (7-12yrs)
no abstract thought

4th stage: formal operational period (12–adult)
think abstractly (logical use of symbols

related to abstract concepts),
systematically and hypothetically

Changes in thinking by which mental processes
become more complex and sophisticated.

Huitt &
Hummel MISE 2007

Cognitive Development – formal operational thought

4

3

3

Kuhn et al

Cognitive Development

Jean Piaget’s fours stages of cognitive development:

1st & 2nd: sensorimotor and preoperational (0-7yrs)

3rd stage: concrete operational thought (7-12yrs)
no abstract thought

4th stage: formal operational period (12–adult)
think abstractly (logical use of symbols

related to abstract concepts),
systematically and hypothetically

Changes in thinking by which mental processes
become more complex and sophisticated.

Not reached by all individuals. Only 30%
to 35% of adolescents exhibit ability for
abstact thought, some adults never do!bad news

Some ability for abstraction with training

good news

MISE 2007

My teaching experience

Some students are able to produce
elegant designs and solutions.

Generally the same students are also
able to comprehend the complexities of
distributed algorithms, the applicability
of the various modelling notations, and
so on.

MISE 2007

Experience: the others ….

Why ?

A number of others are not so able.

They tend to find distributed algorithms
very difficult, do not appreciate the
utility of modelling, find it difficult to
know what is important in a problem,
produce convoluted solutions which
replicate the problem complexities, ……

MISE 2007

I believe …..

… that the heart of the
problem lies in a difficulty in
dealing with

MISE 2007

Abstraction – the key to Software Engineering?

If we want the best Software Engineers, we
need to …
teach them abstraction skills
perhaps we should consider selecting students

for Computing based not only on their school
grades, but also on their abstraction abilities?
i.e. Perhaps we should test their ability for
formal operational thinking?

