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Abstract

In this paper, we present some of the issues encountered
when trying to apply model-driven approaches to the engi-
neering of real-time systems. In real-time systems, quan-
titative values of time, as reflected through the duration of
actions, are central to the system’s correctness. We review
basic time concepts and explain how time is handled in dif-
ferent modeling languages. We expose the inherent para-
dox of incorporating quantitative time-dependent behavior
in high-level models. High-level models are typically built
before the system is implemented, which makes quantitative
time metrics difficult to predict since these metrics depend
heavily on implementation details. We provide some possi-
ble answers to this paradox and explain how the Timed Ab-
stract State Machine (TASM) language helps address some
of these issues.

1 Introduction

The use of models is becoming increasingly popular in
the engineering of complex hardware and software systems.
The increase in popularity can be partly attributed to the
ability to uncover defects during the early phases of the
engineering lifecycle, when defects are much cheaper to
fix [5]. The ability to model systems and to analyze mod-
els gives insight into the potential behavior of the system
before it is built [27]. Real-time systems [8] are a special
class of computer systems where time plays a critical role
in the functionality of the system. Correctness of a real-time
system is defined not only in terms of functional correctness
but also in terms of timing correctness. A real-time system
needs to provide the right answer, but must also do so within
an adequately bounded amount of time. For reactive real-
time systems, that is, systems that typically never terminate,
functional correctness is defined as the system exuding cor-

rect dynamic behavior in its continuous interaction with the
environment. This correctness criteria can be further refined
to mean that certain states of the system should be reachable
while other states should not be reachable. Moreover, for re-
active real-time systems, timing correctness can be defined
as a reachable state of the system being reachable within an
adequately bounded amount of time.

The use of models for real-time system engineering
presents an interesting challenge because to adequately
reflect system behavior, models need to describe time-
dependent system behavior. Furthermore, for real-time sys-
tems, this behavior must be described using quantitative
time. When a model is derived from an implemented sys-
tem, static analysis techniques or measurement techniques
can be used to obtain exact measures of software execu-
tion times [13]. However, in model-driven engineering ap-
proaches [21], the use of models typically happens before
the system is implemented. In this situation, estimating ex-
ecution time of software is an approximate process at best.
In this paper, we review the nature of time in real-time sys-
tems and how time is represented in popular modeling lan-
guages. We also give possible answers on how to address
the inherent paradox of modeling time-dependent system
behavior in the absence of an implementation. We present
the Timed Abstract State Machine (TASM) [26] as a lan-
guage that contains features to address this paradox.

This paper is divided into five sections in addition to
this Introduction. Section 2 reviews the nature of time in
real-time systems. Section 3 reviews some basic time con-
cepts and some popular languages that incorporate time as
a modeling concept. Section 4 provides possible answers
to the inherent paradox of incorporating time in high level
models. Section 5 describes how the Timed Abstract State
Machine (TASM) language addresses some of these issues.
Finally, the Conclusion and Future Work section, Section 6,
summarizes the contributions of the paper and explains the
additions that are to come in future development.
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2 The Nature of Time in Real-Time Systems

The nature of time has been a long standing question
in philosophy, physics, and mathematics [14]. The realist
view, pioneered by Isaac Newton [20], considers time as
an intrinsic dimension of the universe where events happen
in sequence. The contrasting view, pioneered by Leibniz
and Kant [16], views time as a purely intellectual frame-
work used to measure and order events. While this paper
will not attempt to answer the long standing question of the
true nature of time, the philosophical views are helpful to
qualify the nature of time in real-time systems. In practice,
time appears in real-time systems under both facets. How-
ever, in real-time systems, timing correctness does not refer
only to the ordering of events, called qualitative time, but
also refers to the numerical duration between events, called
quantitative time.

Quantitative time appears in real-time system problems
either explicitly or implicitly. Examples of where quan-
titative time appears explicitly include requirements, the
physics of the problem, and constraints of the components
of the system. Examples of explicit instances of quantita-
tive time are shown in Table 2. Examples where time ap-
pears implicitly, as a side-effect, include software execution
time and hardware execution time. Listing 1 shows a brief
example of software code, written in the Timeliner script-
ing language [10]. The code represents a sequence used to
maintain cabin temperature between 20 and 25 Celsius de-
grees. How long does this snippet of Timeliner code take
to execute? To answer this question, many other questions
need to be answered such as what is the temperature? What
are the semantics of this language, e.g., what statements are
blocking? How long do the statements block for? What
compiler is used to translate the code? What are the details
of the hardware platform where the code is executed? Once
the code has been written and the system is implemented,
these questions can typically be answered to a satisfactory
degree of confidence [11].

Listing 1 Sequence TEMP MONITOR [30]
SEQUENCE TEMP_MONITOR
EVERY 1
IF TEMPERATURE >= 26 THEN

SET TRYING_TO_COOL_SYSTEM TO TRUE
COMMAND COOLING, NEW_STATE=>ON
WHEN TEMPERATURE <= 22
SET TRYING_TO_COOL_SYSTEM TO FALSE
COMMAND COOLING, NEW_STATE=>OFF

END WHEN
END IF
IF TEMPERATURE <= 19 THEN

COMMAND HEATING, NEW_STATE=>ON
WHEN TEMPERATURE >= 22
COMMAND HEATING, NEW_STATE=>OFF

END WHEN
END IF

END EVERY
CLOSE SEQUENCE

Source Example
Requirements The data in the operator console

shall be refreshed 10 times per sec-
ond

Physics It takes approximately 5 seconds for
a projectile shot straight up in the air
at a velocity of 50 m/s to come to
rest at its apogee

Components Pressure sensors can put data on the
system bus at a rate of 10Hz

Table 1. Examples of Sources of Explicit
Quantitative Time

Even for software, time can also appear implicitly and
explicitly. For example, the code in Listing 1 contains one
explicit timing statement, the “EVERY 1” statement. This
statement tells the runtime system that the sequence shall
execute at most once per second. Other examples of ex-
plicit timing statements include the statements sleep and
wait, which are present in many programming languages
such as C and Java. In real-time system engineering, the
explicit sources of quantitative time, outside of software,
define the timing constraints of the system that will be built.
The goal of real-time system engineering is to build a sys-
tem that meets these constraints. This is where modeling
can add value, by providing increased confidence, before
it is physically built, that a system will meet the necessary
constraints.

3 Time Concepts in Modeling Languages

In the previous section, we have described how time af-
fects the design and execution of real-time systems. In par-
ticular, we have shown an example of software code ex-
uding explicit and implicit timing behavior. In modeling
languages, quantitative timing concepts are almost always
explicit. The type of modeling described in this paper is be-
havioral modeling, to capture the dynamic aspects of the
system. Behavioral modeling is in contrast to structural
modeling, which captures the static aspects of the system,
e.g., a class inheritance hierarchy or a multiplicity relation-
ship. In behavioral modeling, system dynamics are typi-
cally represented as some form of transition system where
the system transitions from one state to another state based
on a set of conditions. Traditional languages to represent
state transition systems include finite state automata [29]
and Statecharts [15]. For most modeling languages, un-
timed versions of the language exist and time was added
as an extension of the language. This is the case for timed
automata [2], time/timed petri nets [7], timed process al-
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gebra [18], Timed Abstract State Machines (TASM) [26],
and the real-time profile of the Unified Modeling Language
(UML) [22].

While all of these languages have similarities, they also
have significant differences in how they represent and han-
dle time. The two main time models are discrete time and
continuous or dense time. In a discrete time model, time
progresses in fixed constant steps dt ∈ N+. In a continuous
time model, time evolves continuously, and any time-related
value is taken from the Reals domain (t ∈ R). Languages
also differ on how time evolves. Time can evolve either
in states or in transitions. For example, time annotations
can be added to petri nets in places or in transitions or in
both [7]. The difference lies in whether what we wish to
describe is the duration of an action or whether we wish to
describe the passage of time. An example of a light switch,
modeled in the timed automata of UPPAAL [17] is shown in
Figure 1. The model describes the behavior of a lamp [3].
If the lamp is off and the switch is pressed, the lamp will
turn on to the low setting. If, after the light has been turned
on, the switch is pressed again within 5 time units, the lamp
increases its intensity to the bright setting. On the other
hand, if the lamp is on and the switch is pressed again, but
more than five time units have elapsed, the lamp turns off.
This example illustrates a model that describes the passage
of time between events. In this model, events are instan-
taneous but the precise timing between events is of utmost
importance.

brightlowoff

press?

y < 5

y >= 5

press?

press?

y = 0

Figure 1. Timed Automaton Describing the
Behavior of a Lamp [3]

Another way to represent time is to model events or
actions as being durative instead of instantaneous. In the
TASM language [24], time is attached to transitions to sim-
ulate durative actions. Listing 2 shows the actions of the
robot of the production cell system [19], modeled in the
TASM language [25]. In the production cell problem, a
robot takes commands from a controller and executes these
commands. When the robot is instructed to pick up a block,
the action takes a certain amount of time to complete until
the robot is available again to process other commands. In
Listing 2, the action to pick up a block lasts 1 time unit.

Whether a language predominantly favors time passage

Listing 2 Partial TASM Model of a Robot Action to Pick
up a Block
R1: Arm B at press, block is available -> pick up block
{
t := 1;
power := 2000;

if armbpos = atpress and armb = empty
and press_block = available then
press_block := notavailable;
press := empty;
armb := loaded;

}

or duration of actions in its notation is irrelevant from an ex-
pressivity perspective since both types of notations can be
used to represent both concepts [4]. The differences lie in
what paradigm better fits the problem being addressed. For
the specification of real-time systems, and for the modeling
of software in general, the term execution time is used in nu-
merous contexts. This term refers to the time to execute ac-
tions or, in other words, to the duration of actions. Verifying
the correctness of a real-time system involves establishing
that the durations of the actions of the system meet the time
constraints of the requirements and of the problem domain.
Listing 3 shows a TASM model of the TEMP MONITOR
sequence from Listing 1. The sequence has been augmented
with timing information obtained from [11].

Listing 3 Partial TASM Model of the TEMP MONITOR
Sequence of Listing 1
R2: b1 -> b2
{
t := 2285;

if temp_seq_b = b1 and temperature >= 26 then
temp_seq_b := b2;
trying_to_cool_system := True;
cooling := turn_on_device();

}

R3: b1 -> b3
{
t := 1730;

if temp_seq_b = b1 and temperature < 26 then
temp_seq_b := b3;

}

R4: b2 -> b2
{
t := 1625;

if temp_seq_b = b2 and temperature > 22 then
temp_seq_b := b2;
temp_seq_s := done;

}

The TASM model of Listing 2 models time, as enforced
by the physics of the problem, namely, the plant dynam-
ics of the robot. The time-dependent behavior of physical
properties of the system, such as the one modeled in List-
ing 2, time can generally be modeled accurately. The TASM
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model of Listing 3 models the software sequence of List-
ing 1. This model shows that it is possible to model software
and time in modeling languages. However, time was added
in the model quite easily because the execution platform is
known [11], the precise timing of statements is known [11],
and the details of the program are known [30]. In other
words, the modeling was performed after the system was
built. Building models this way is still useful because it en-
ables the analysis of software behavior that cannot typically
be performed on the software directly [28]. However, mod-
ern model-driven approaches are aimed at complete lifecy-
cle modeling and analysis, typically performed before the
system is built. Building system and software models with
timing information brings up an interesting question: can
we build accurate models of software, including quantita-
tive timing behavior, before the system is implemented?

4 The Time Paradox: Incorporating Time in
High-Level Models

The previous two sections explained how time is treated
in real-time systems and how modeling languages express
time. In this section, we further expand on the paradox en-
countered when attempting to model system behavior that
is closely tied to implementation details. In scheduling the-
ory [8], the task graph [1] is the prevalent modeling pattern.
A task graph is a directed graph where nodes represent tasks
and edges represent precedence constraints between tasks.
Each task is assigned an execution time, that is, a duration.
A sample task graph with 7 tasks is shown in Figure 2. The
scheduling problem is concerned with the time optimal so-
lution to scheduling the set of tasks on n processors, while
enforcing the precedence constraints.

T7

9
T6

8

T4

12

T3

3

T2

8

T1

6

T5

7

Figure 2. Sample Task Graph

Analogously, the co-synthesis problem concerns itself
with optimal allocation of a task graph to processing ele-
ments (e.g., reusable hardware (FPGA), application specific

integrated circuits (ASIC), and software) [9]. The similar-
ities between these two problems lie in the existence of a
task graph, with known execution times for individual tasks.
For the co-synthesis problem, this assumption seems mis-
leading because the execution times will vary depending
on which processing element a task is allocated to. On the
other hand, for the scheduling problem, the task graph can
be derived from an implementation. However, in real-time
system engineering, the task graph is an abstraction of an
implementation and, conceptually, should be defined before
implementation begins. Defining the set of tasks and the de-
pendencies between tasks should be a design decision, not
an implementation one. If we rely on the set of tasks to
naturally emerge during coding, development will remain
an ad-hoc process at best, with little support for predictabil-
ity. Furthermore, the scheduling problem also assumes that
tasks have already been assigned to software, and therefore
makes co-synthesis challenging. It is one of the goals of
model-driven engineering to remedy ad-hoc system devel-
opment by structuring engineering activities through the use
of models. For real-time systems, how can we build realis-
tic models, such as task graphs, before implementing the
system?

The are many possible answers to this paradox. Con-
ceptually, design is and has always been an uncertain pro-
cess where predictions that may or may not come true are
made [6]. Nevertheless, design has proved to be a valu-
able activity in terms of cost and time saving, even in the
face of uncertainty [5]. In a model-driven approach to de-
velopment, it is highly unlikely that model-driven engineer-
ing will be a purely downstream activity flowing one-way
from model to implementation. It is more likely that feed-
back from downstream activities will be incorporated into
upstream activities, leading to an iterative model-driven ap-
proach, where models are being adjusted as implementation
is being developed. Like any other topic in system engineer-
ing, experience with building models and experience with
engineering using models will dictate the successful use of
models in real-time system engineering. Moreover, rooting
development around mature and predictable components, as
is often the case in aerospace systems, greatly enhances the
predictions that can be made by models.

At the modeling level, modeling notations are able to
capture the uncertainty involved with annotating models
with time. The use of interval semantics for durations gives
a lower bound and an upper bound on durations. An exam-
ple of a TASM specification with duration specified using
interval semantics is shown in Listing 4.

Furthermore, the granularity of the model determines
whether software times should be included in the model.
For system models such as the production cell system [25],
the physics of the problem and the time constraints on the
system are on a scale much larger (on the order of seconds)
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Listing 4 TASM Model (partial) of an electronic throttle
controller [23] (partial)
R1: Driving Mode
{
t := [2, 5];

if controller_mode = driving then
throttle_v := Driving_Throttle_V();

}

R2: Limiting Mode
{
t := [3, 8];

if controller_mode = limiting then
throttle_v := Limiting_Throttle_V();

}

than the time scale of the software (on the order of mi-
croseconds). Consequently, as it often happens in high-level
models, the software is fast enough given the problem def-
inition and time does not need to be included for software
in the models. This is certainly the case in the production
cell system where controller actions are approximated to be
instantaneous.

A model-driven approach should have a notion of refine-
ment, that is, a methodology to build models at different lev-
els of abstraction, by gradually adding details to high-level
models. Furthermore, the refinement approach should have
facilities to show a correspondence between two models at
different levels of abstraction. If such a notion is present,
time estimates from high level models become constraints
on lower level models and, eventually, constraints on im-
plementation. If an implementation cannot satisfy those
constraints, the models will need to be adjusted in order to
accommodate implementation characteristics. In this view,
task graphs can be designed and approximated using high
level models, making the scheduling problem and the co-
synthesis problem relevant. During the design phase, ana-
lyzing schedulability and possible allocations to hardware
and software can be useful to drive the implementation.

5 The TASM Approach to Modeling and An-
alyzing Real-Time Systems

Listings 2, 3, and 4 show partial examples of models
built in the TASM language, a language used to model real-
time systems. The TASM language is a specification lan-
guage that incorporates facilities to model and reason about
functional behavior and non-functional behavior. The non-
functional modeling concepts of the TASM language in-
clude time and resource consumption. The language also
contains facilities to specify hierarchical composition and
parallel composition of system components. The TASM
language is the basis for a framework used to engineer real-
time systems [24]. The language is implemented into an

associated suite of tools, the TASM toolset, to simulate, val-
idate, and formally verify properties of TASM models [12].
The types of properties that can be verified in the toolset
include completeness and consistency [27], and execution
time characteristics [28].

The TASM language uses durative actions as the un-
derlying time model. This model is adequate to describe
real-time system behavior where duration of actions and
temporal dependencies are the central concern. The time
model is combined with an additive resource consumption
model to capture parallel behavior. The TASM language has
been used to model and analyze an electronic throttle con-
troller [23], the production cell system [25], and the Time-
liner system [28], a scripting environment currently in use
on the International Space Station. The TASM language
and toolset seek to address some of the paradoxes exposed
in earlier sections of this paper. The interval semantics of
durative actions help mitigate the uncertainty of estimating
time. Furthermore, a theory of refinement is currently be-
ing developed for the language. The end goal of the lan-
guage and framework is to provide end-to-end traceability
from high-level models, all the way down to implementa-
tion. This will be achieved through the refinement theory
and through code generation techniques.

6 Conclusion and Future Work

In this paper, we have presented some of the important
issues typically encountered when incorporating time in the
modeling of hardware and software systems. This paper
also raises questions about the feasibility of model-driven
engineering for real-time systems. We have reviewed basic
time concepts in popular modeling languages and some of
the paradoxes that naturally occur in the engineering of real-
time systems using models. We have partially answered
some of these questions, and we have presented the Timed
Abstract State Machine (TASM) approach to modeling real-
time systems as a potential solution.

In future work, we plan to model and analyze more ex-
amples of real-time systems using the TASM language and
toolset. As we develop our refinement theory, we hope to
achieve end-to-end traceability of lifecycle activities, from
high-level models all the way down to implementation.
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