Requirements Models at Design- and Runtime

Alex Borgida Rutgers University

John Mylopoulos (Trento, Toronto)

Fabiano Dalpiaz (Toronto)

Jennifer Horkoff (Trento)

Part of larger work on adaptive systems.

MISE'13 -- 1

OUTLINE

- General thoughts about models, modeling,...
- Specific Thoughts about Early Requirements Engineering
- Goal Oriented Requirements Modeling
 - Design time models
 - Run-time models

Warning: first part may be tendentious, opinionated; second part is work-in-progress

MODELS & MODELING

- "Models abstract away details for a purpose" (wide agreement here yesterday)
- Many kinds of details. [And to build big models you need to refine your original small model.]
 - classification [instantiation] (+in Taxis,RML:design [run-time])
 - generalization [specialization]
 - aggregation [decomposition]
 - "static" [dynamic/behavior]
 - specification [implementation]

(The above thoughts inspired by the field of Conceptual Modeling)

MISE'13 -- 4

MODELING LANGUAGES/NOTATIONS/...

- "models are for purpose": what is "purpose"?
 - ofor us: answer questions
 - others (simulate/execute,...)
 - need a semantics on which to base |=
- language issues: i) expressiveness; ii) **ontology:** what kinds of things are in the subject domain?
 - this strongly influences the models you build by directing the kinds of questions you ask be aware of it! (ER, Statecharts, FOPC (vs. Z),...)

Requirements Engineering

- Concerned with the elicitation, analysis and refinement of stakeholder requirements in order to produce a specification for a system-to-be.
- Founded on seminal works by Douglas Ross, Michael Jackson and others in the mid-70s.
- Unique research area within CS because its task is not to solve problems, but rather to *define* ones.
- Interesting area because (early) stakeholder requirements are necessarily *vague*, *informal*, *self-contradictory*, and more (... in short, "scruffy"), but they are requirements none-the-less!

MISE'13 -- 6

Interesting ideas

- •Requirements derived from models of the *domain* (Ross).
- •Requirements and *specifications* are different things, though logically related (Jackson).
- Requirements as goals stakeholders want (vanLamsweerde).
- The requirements problem is a *social* problem (Yu).
- The requirements problem is solved through problem *refinement* (all), and this refinement has many forms: activity decomposition (Ross), abductive inference (Jackson), goal refinement (van Lamsweerde), social delegation (Yu).
- •With goal models and refinement, you are not exploring a design, but rather a design *space*.

GORE: Goal Oriented Requirements Models

GORE Ontology

Goal Models circa 2013

•Goals can be mandatory/nice-to-have, can have priorities [Jureta08], probabilities [Letier04], utilities [Liaskos13], ...

Reasoning with (design-time) Goal Models

- What-if: Assuming that some goals succeed/fail, infer the status of the rest of the goal model.
- Satisfiability: Is there a set of task specifications that achieve the top-level goals
- •What-if reasoning can be handled with simple label propagation algorithms, satisfiability requires a min-SAT solver.
- •Reasoning with preferences, probabilities and utilities requires more, e.g., Al planners [Liaskos10], SMT solvers, ...

What do these models tell us?

- They give us alternative specifications (sets of functions qualities and assumptions) for fulfilling requirements.
- If someone wants a design that fulfills requirements in multiple ways (e.g., product families, flexible business processes, adaptive software systems) then our solution and implementation should encompass multiple specifications, not just one.
- These are *design-time* goal models, of no use during runtime and/or evolution.

MISE'13 -- 13

Adaptive Software Systems

- Software systems increasingly operate within volatile environments where the one constant is *uncertainty*: cyberphysical systems, socio-technical systems, ...
- In response, there has been growing interest in adaptive software that monitors its own performance and the environment, and adapts if its requirements fail.

Need to monitor requirements, but how?

• Two approaches: (a) Monitor design artifacts (code, architecture, business process) and draw conclusions about requirements; (b) monitor requirements.

Design-time vs runtime models

- Design-time models are intended to help us capture required functionality for the system-to-be.
- Runtime models are intended to help us monitor behaviour of the system and take corrective action, if necessary.

MISE'13 -- 16

Runtime goal models

- Are augmented goal models that capture, in addition to a problem space
 - ✓ Behaviour possible sequences of actions for fulfilling a goal;
 - ✓ State possible states of a goal instance; current state of a goal instance;
 - ✓ History the state history of all instances of a goal

Example

Excerpt from example ATM model [Yiqiao Wang07]

• What questions might we ask about a runtime model? For example, if we know that for one instance of W, followed by 2 instances of D, all <u>satisfied</u>, and 2 instance of B, one <u>satisfied</u>, the other still being <u>pursued</u>, what is the state of the correspoding instance of SC?

MISE'13 -- 18

State (fixed model)

- We use FSMs, such as the following one (for goals).
- Every goal instance can be in one of these states. ...

Behaviour: refining design time GM

• Described by annotating every non-leaf goal with a regular expression, e.g.,

annot(
$$SC$$
) = (D | W | B)⁺; Dn

MISE'13 -- 20

Behaviour - Shuffle

... or ...
$$((D | W)^{+} # B^{+})$$

Means exactly what you expect ...

- If w1 = abb and w2 = acbb, then w1 # w2 consists of strings like aabcbbb, aacbbbb, ... lot's of them!
- More interestingly, shuffle closure ... $w^{\#} = w \mid w \# w \mid w \# w \# w \parallel ...$

allows for unbounded concurrency

- •For example, annot(SCS) = SC#
- (Recognition for shuffle regular expressions is PTIME (in size of input trace only))

RUNTIME History

- At runtime, goals/tasks are instantiated (possibly many times)
- a system *trace* is a history of state transitions/events for goal instances:

d1.start,d1.succ,d2.start,...,dn.start,dn.succ

.....

RUNTIME GOAL MODEL INSTANCE

 More general: RGI reconstruction from partial (initial) trace of leaf of instances

MISE'13 -- 23

RUNTIME GOAL MODEL INSTANCE

- Consistency requirements
 - o children goal instances must satisfy behavioral annotation
 - states of children need to correlate with states of parents via RegExp rules (e.g., if a step fails, supergoal fails)

MISE'13 -- 24

Reasoning with Runtime Goal Models

- **Recognition**: Given a trace and a DGM, determine if the (partial) trace is legal.
- **RGI reconstruction**: Given a trace and a DGM, construct a corresponding goal instance model and infer the states of non-observable goal instances.
- **Diagnosis**: Assume a class of possible failures; given a trace and a DGM, determine if there is a failure; if so, determine all possible root causes.

Summary

- Unlike their design cousins, runtime requirements models need to capture behaviour, state and history.
- Reasoning for such models is founded on recognition problems for formal languages, rather than satisfiability.
- The ever-growing demand for flexibility, adaptability, customizability, etc. dictates the use of requirements models both at design time, runtime and throughout the lifecycle of a software system.

MISE'13 -- 27

References

- •[Borgida13] Borgida A., Dalpiaz F., Horkoff J., Mylopoulos J., "Requirements Models for Design- and Runtime", 2nd ICSE Workshop on Models in Software Engineering (MISE' 13), San Francisco, May 2013.
- •[Dalpiaz13] Dalpiaz F., Borgida A., Horkoff J., Mylopoulos J., "Runtime Goal Models", 7th IEEE International Conference on Research Challenges in Information Science (RCIS'13), Paris, May 2013.
- •[Dardenne93] Dardenne, A., van Lamsweerde, A. and Fickas, S.,"Goal-Directed Requirements Acquisition", in The Science of Computer Programming 20, 1993.
- •[Jackson95] Jackson M., Zave P., "Deriving Specifications from Requirements: An Example", 17th International Conference on Software Engineering (ICSE' 95).
- •[Jureta10] Jureta, I., Borgida, A., Ernst, N., Mylopoulos, J., "Techne: Towards a New Generation of Requirements Modeling Languages with Goals, Preferences and Inconsistency Handling", 19th Int. IEEE Conference on Requirements Engineering (RE'10), Sydney Australia, Sept. 2010.
- •[Letier04] Letier E., van Lamsweerde A., "Reasoning about Partial Goal Satisfaction for Requirements and Design Engineering", 12th International Symposium on the Foundation of Software Engineering FSE-04, pages 53–62, Newport Beach CA, November 2004.

References (cont'd)

- •[Liaskos10] Liaskos, S., McIlraith, S., Sohrabi, S., Mylopoulos, J., "Integrating Preferences into Goal Models for Requirements Engineering", 19th Int. IEEE Conference on Requirements Engineering (RE' 10), Sydney Australia, September 2010.
- •[Liaskos13] Liaskos S., Khan S., Soutchanski M., Lapouchnian A., and Mylopoulos J., "Modeling and Reasoning About Uncertainty in Goal Models", (submitted for publication).
- •[Ross77] Ross, D. T., and Schoman, "Structured Analysis: A Language for Communicating Ideas," *IEEE Transactions on Software Engineering 3(1)*, Special Issue on Requirements Analysis, January 1977, 16-34.
- •[Sebastiani04] Sebastiani R., Giorgini P., Mylopoulos J., "Simple and Minimum-Cost Satisfiability for Goal Models", 16th International Conference on Advanced Information Systems Engineering (CAiSE' 04), Riga, June 2004, Springer-Verlag LNCS 2003, 20-35.
- •[Souza11] Silva Souza V., Lapouchnian A., Robinson W., Mylopoulos J., "Awareness Requirements for Adaptive Systems", 6th ICSE Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS' 11), Waikiki Honolulu, May 2011.
- ●[Souza11a] Silva Souza V., Lapouchnian A., Mylopoulos J., "System Identification for Adaptive Software Systems: A Requirements Engineering Perspective", 30th International Conference on Conceptual Modelling (ER' 11), Brussels, November 2011, 346-361.

MISE'13 -- 29

References (cont'd)

- •[Souza12] Silva Souza, V., Lapouchnian A., Angelopoulos K., Mylopoulos J., "Requirements-Driven Software Evolution", *Computer Science Research and Development* (CSRD), Springer-Verlag, October 2012 (online version).
- **⑤**[Souza12a] Souza V., Lapouchnian A., Mylopoulos J., "Requirements-Driven Qualitative Adaptation", 20th International Conference on Cooperative Information Systems (CooplS' 12), Rome, September 2012, Springer-Verlag LNCS 7566, 342-361.
- •[Yu93] Yu Eric, "Modelling Organizations for Information Systems Requirements Engineering", First IEEE International Symposium on Requirements Engineering (ISRE'93), San Jose, January 1993.
- [Chidi Okoye] http://www.modernartimages.com/expressionsofdance3.htm