
Engineering Trust Management into Software Models

Mark Reith∗, Jianwei Niu, William H. Winsborough
University of Texas at San Antonio

One UTSA Circle
San Antonio, Texas, USA 78249

{mreith, niu}@cs.utsa.edu, wwinsborough@acm.org

Abstract

Security in software is often considered a nonfunctional
requirement because it is often interpreted as an emergent
feature of the system. Too often it is introduced as a last-
minute requirement over an otherwise completed product
rather than properly integrated during the early stages of
software design and development. One significant aspect
of security involves access control. This paper proposes
a multi-layer model detailing the integration of trust man-
agement access control with an application’s model behav-
ior. Our previous work focused on modeling the dynamic
changes of a trust management policy for the purpose of
verifying security properties using model checking. We are
working toward integrating both the trust management pol-
icy and the mechanisms that enforce that policy for the pur-
pose of verifying security properties. We focus on the Role-
based Trust Management (RT) language and suggest con-
cerns specific to it.

1. Introduction

Software plays essential roles in our lives and is preva-
lent in financial, transportation and telecommunication sys-
tems. Software security is a critical aspect of these sys-
tems because it prevents a subset of software failures due to
both accidental and malicious incorrect operation, allowing
these systems to function correctly and deliver reliable ser-
vice. Common security technologies such as cryptograph-
ical protocols, firewalls, and antivirus software attempt to
shape the environment in which software operates, but have
not always been successful at preventing the exploitation of
software. While these technologies do provide some mea-
sure of protection, they have not always proven effective
because they are primarily used to protect software at the

∗The views expressed in this article are those of the author and do not
reflect the official policy or position of the United States Air Force, De-
partment of Defense, or the U.S. Government.

communication and system level rather than at the applica-
tion software level [20].

Application security focuses on preventing the exploita-
tion of software by constraining application behavior rather
than the environment in which it executes. One key area of
application security involves controlling access of software
features. Various access control models have been studied
including access control matrices and lists [8], role-based
[16, 17], and logic-based [21]. We are primarily interested
in such models that are expressed through policies. Policies
provide a means of configuring access control without re-
compiling the executable. Instead of implementing the ac-
cess control details such as users and permissions directly
into the software, policies provide the customizable and
modifiable logic that determines access and then passes the
decision results to mechanisms that are implemented in the
software. However, problems arise when policy and mech-
anisms are not matched properly. We suggest state machine
based modeling as a means of addressing this issue.

A significant concern for software developers is how
to incorporate access control into software such that it is
configurable through policies, and then verify that security
properties in the software/policy system still hold. We out-
line a framework for reasoning about configurable policies,
security enforcement mechanisms, and access control secu-
rity requirements in a multi-layer model. The multi-layer
approach attempts to organize a complex security design
into simpler layers that can be evaluated against security
requirements. It seems reasonable that some requirements
might be satisfied within a layer, while other requirements
may be satisfied only through a combination of layers. We
are interested in verifying properties both within a layer
and across multiple layers. The layered approach is in-
spired from the observation that policy usage may satisfy
some, but not necessarily all, security requirements. Conse-
quently, those unsatisfied requirements must be addressed
by some other means, ideally in a separate layer. The goal
of the proposed approach is to scope these layers to a degree
of complexity that is appropriate for automated tools such

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

as model checkers.
In previous work [15], we demonstrated the feasibility of

using automated analysis tools such as model checkers to
verify security properties in RT policies. Two main contri-
butions came from this work. First, it provided a relatively
quick means to find counterexamples to certain expensive
types of analysis when properties fail to hold. Second, it
provided software engineers a means of analyzing policies
with well understood and automated tools. Such a technique
is only the beginning of a larger effort to model and analyze
security properties of not only the policy, but the associated
application as well. Doing so provides more confidence in
the security attributes of the application from a holistic point
of view.

The structure of this paper is as follows. Section 2 briefly
describes trust management, a specific trust management
language called RT, and our previous work on analyzing
security properties of this language. Section 3 outlines the
proposed layered framework for modeling policy and en-
forcement points, and how the two models shall relate. Sec-
tion 4 presents related work on engineering secure software
systems. Finally, Section 5 provides a discussion of future
work.

2. Trust Management

Trust management [4, 12] can be described as a type of
access control where access decisions are determined by a
set of entities represented as a set of credentials. Each en-
tity may delegate a subset of permissions they posses using
digitally signed credentials as documentation. Such trust
management systems are useful in decentralized environ-
ments where scalability of access control is desirable. Due
to their distributed nature, each relevant credential is first
consolidated into a collection that is then used to prove an
access request. Over time, resource owners and intermedi-
aries may add, modify or revoke credentials and thus dy-
namically change access control. Although there exists sev-
eral TM languages such as PolicyMaker [4], KeyNote [3]
and Cassandra [2], we focus our attention on Role-based
Trust Management (RT) since it already provides a strong
theoretical foundation for security property analysis.

2.1. The RT Language

The role-based trust management policy language RT
was designed to support highly decentralized attribute-
based access control [12]. It enables resource providers to
make authorization decisions about resource requesters of
whom they have no prior knowledge. This is achieved by
delegating authority for characterizing principals in the sys-
tem to other entities that are in a better position to provide
the characterization. For instance, to grant discounted ser-
vice to students, a resource provider might delegate to uni-

Type Syntax Description
Type I A.r ← D Simple Member
Type II A.r ← B.r1 Simple Inclusion
Type III A.r ← B.r1.r2 Linking Inclusion
Type IV A.r ← B.r1 ∩ C.r2 Intersection Inclusion

Figure 1. RT Statements

versities the authority to identify students and delegate to
accrediting boards the authority to identify universities. A
full treatment of the RT language can be found in [13].

The RT language consists of two primary objects called
roles and principals. A principal is an entity such as a per-
son or software agent. Each role can be described as a set
of principals and is of the form “principal.role name”. One
interpretation of this role is that the principal considers the
members (also principals) of this role to have an attribute
denoted by the role name. For example, Alice.friend may
be a role that contains the principals whom Alice considers
friends.

The basic RT language consists of four types of state-
ments as shown by Figure 1 [13]. Type I statements directly
introduce individual principals to roles. For example, Al-
ice.friend ← Bob identifies Bob as a friend of Alice. A
given principal must appear in a Type I statement if it is to
be contained by any role. Type II statements express a form
of delegation that describes the implication that if principals
are in one role, then they are in another role as well. For ex-
ample, the statement Alice.friend ← Bob.friend describes
the situation in which if a principal is a friend of Bob, then
they are also a friend of Alice. Type III statements provide
a mechanism to delegate to all members of a role. For ex-
ample, the statement Alice.friend ← Bob.friend.friend says
that any friend of Bob’s friends is also a friend of Alice. It
does not imply that Alice’s friends include Bob’s friends.
Finally, Type IV statements introduce intersection such that
a principal must be in two roles in order to be included.
For example, Alice.friend← Bob.friend ∩ Carl.friend says
that only those principals who are both Bob’s friends and
Carl’s friends are introduced into the set of Alice’s friends.
Note that disjunction is provided through multiple state-
ments defining the same role. Each delegation statement
may also include an optional conditional statement that de-
termines if the delegation occurs. For example, the expres-
sion Alice.friend ← Bob.friend [x] could be interpreted as
every friend of Bob is also a friend of Alice if and only if
condition x is satisfied. Conditional statements may utilize
local variables from a trust management application.

2.2. Model Checking RT Security Proper-
ties

Of particular interest to policy designers is the ability
to reason about access control despite the changes that are

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

made to the policy. If we define the state of the policy as
a specific collection of credentials, then this state changes
as credentials are added and removed. Given a set of pol-
icy authors who are identified as competent and trustworthy,
we can assume for the purpose of analysis that the addition
and removal of certain credentials is restricted and thus we
may evaluate the policy state for certain properties. For ex-
ample, is there a reachable state where Alice can be denied
rightful access due to policy changes made by an untrusted
principal? This question of availability is closely related to
the safety question. Does there exist a reachable state where
an untrusted principal gains access? In our previous work
[15], we developed an automated approach to reason about
such properties. We translated RT policies into the input
language of model checker SMV to perform such security
analysis. Having established a foothold on techniques for
policy analysis, we now turn our attention to a larger frame-
work that includes the application associated with the pol-
icy.

3. A Layered Framework for Modeling Soft-
ware & Security Policies

We propose a framework for describing software that uti-
lizes trust management technology such as RT. This soft-
ware comprises an application and an associated security
policy such that the application bases access control deci-
sions on this policy. We define security policy as a given set
of RT statements. As such, we expect it to be dynamic in
the sense that it is allowed to change. By contrast, we define
security requirements as invariant access control properties
that must hold in all access control decisions under all poli-
cies. Such requirements may be addressed by the policy or
by constraints hard-coded into the application.

The purpose of this framework is twofold. First, we sug-
gest one approach for incorporating trust management tech-
nology into applications. We suspect that a significant per-
centage of security defects in software are a result of im-
proper incorporation of security technologies into software.
Thus it is relevant to examine how policies are incorporated
into applications. Second, we wish to reason about secu-
rity properties related to access control. We illustrate our
framework in Figure 2 as three layers: the application be-
havior layer, the enforcement layer, and policy layer. Each
layer has its own form of state information and thus each
may be modeled. Software can then be described in terms
of these layers. By separating the application, enforcement,
and policy concerns into different layers, we hope to limit
the scope of the model we need to consider during the ver-
ification of security properties. We also consider the need
to verify security properties across layers, in which case a
well defined mapping between layers is necessary. Verify-
ing properties across layers provides a holistic perspective

of security.

Figure 2. Application, Enforcement, and Pol-
icy Layers

3.1. Modeling the Application Behavior
Layer

The application layer describes the behavior of the base
software without access control concerns. Here a behav-
ior is defined as a sequence of transitions on a state tran-
sition diagram. We make no assumptions about the level
of abstraction used to define the diagram, however we do
recognize that behaviors can often be expressed as a com-
position of other behaviors. Our interest at this layer is to
identify and label those behaviors, such as W , V , and X ,
that require protection from unauthorized access, as in the
example in Figure 3.

Figure 3. Example of Application Behavior

3.2. Modeling the Policy Layer

The policy layer describes structure and security prop-
erties of policies. Structure refers to how policies are con-
structed as well as how they change. Section 2 provided a
description of both the structure and security properties of
the RT language. We suggest role dependency graphs as a
model for our policy because it shows the nature of the del-
egation chain and how users/principals are introduced into
the policy. A role dependency graph (RDG) [15] is a tool
for visually depicting and analyzing role-to-role and role-
to-principal relationships. It is a directed graph where each

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

node represents a role, a linked role, the conjunction of two
roles, or a principal. Each edge represents a specific policy
statement and is labeled by its statement index. An edge
is understood to mean that the source node is dependent on
the destination node. We add to this RDG two additional
notations, as illustrated in Figure 4. First, the expression
role : behavior in a node represents a binding of a role
to the ability to access a behavior. Second, we label edges
with conditions that must hold for the delegation to occur.
Such condition statements may rely on application state in-
formation. In this example of a policy model, the behaviors
W and V represent transitions in Figure 3, and as such Eve
has no access to any behaviors, while Alice has access to
behavior W if both conditions hold.

The properties we might consider verifying include
availability and safety concerns as described in Section 2.2.
In addition, we may wish to explore the following ques-
tions:

1. Can we verify that invariant properties hold regardless
of how the dynamic policy changes?

2. How is the policy allowed to change?

3. Does the policy require application state information
to determine access?

Figure 4. Example Policy Model

3.3. Modeling the Enforcement Layer

The enforcement layer describes the means in which ac-
cess control decisions are made in the application layer.
A security enforcement point (SEP) is a mechanism as-
sociated with a particular behavior, and makes a decision
whether a principal may access this behavior. It is defined
as a structure that consists of a guard component and a
state component. The guard component controls a given
transition in the application layer, and thus permits or de-
nies application behavior based upon a set of conditions.

These conditions may depend on three pieces of informa-
tion. First, a condition may depend on whether a principal
requesting access to a behavior can prove that they are au-
thorized according to the policy. Second, a condition may
rely on application state information, such as whether a re-
source is available. Finally, a condition may depend on state
component information from one or more SEP’s. The state
component can be described as a state machine that cap-
tures access history. An example where a SEP might re-
quire its own state component information is in the situation
where accesses must alternate between two sets of princi-
pals. Consider Figure 5 where the principals in role A.r and
B.r must take turns accessing a single behavior. In another
example, collections of SEP’s may rely on each other’s state
information to make decisions such as in the situation where
a SEP permits one behavior only in the case where a differ-
ent SEP denies another behavior.

Figure 5. Enforcement Layer: State Compo-
nent of SEP Associated with Behavior W

This layer is also concerned with placement of enforce-
ment points in such a way as to provide coverage over the
protected behaviors. We seek to apply formal methods such
as model checking to verify the design of not only the place-
ment of enforcement points, but also the conditions of these
points. Our approach is to begin with a notation for describ-
ing placement of SEP’s. Although a specific notation for
modeling SEP’s is the subject of future work, we initially
suggest the following. Consider a set of behaviors labeled
V , W , and X are exhibited by the application in Figure 3.
Behaviors V , W , and X are not decomposable into simpler
behaviors, however we may define behavior Y as a com-
position of W and X , and behavior Z as a composition
of V and X . In this notation, we use a comma separated
sequence to describe behavior composition. For example,
Y : W,X expresses behavior Y as an ordered composi-
tion of W and X . Such a notation may assist us to decide
whether to place a SEP as a guard on behavior Y explicitly,
or as a set of SEP’s on behaviors W and X . We denote
the guard component of the SEP associated with behavior
Y as guard(Y). Alternatively we may desire a finer de-
gree of control in the form of Y : guard(W), guard(X).
A composite behavior is said to be accessible if all of its
sub-behaviors are accessible. With respect to the applica-
tion layer model, we may verify such properties as:

1. From state A, behavior Y is accessible if and only if
the conditions of W and X are satisfied.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

2. From state B, behavior X is accessible if and only if
the conditions of X are satisfied.

Analysis at the enforcement layer might include verifica-
tion of invariant properties, and the behavior of individual
and collective SEP’s. As the middle layer of this frame-
work, it may be necessary to simulate the dynamic policy
layer and interpret the effect on the application layer. Such
an approach focuses on modeling security from the point of
view of SEP’s and invariant properties in hopes to answer
such questions as:

1. Can we verify invariant properties hold regardless of
how the state of the SEP’s change?

2. Is there some reachable state of SEP’s that may lead to
a prohibited application behavior? Can this SEP state
be created through dynamic policy?

3. If access to a software behavior is denied by a SEP, will
this cause some undesirable effect (inadvertent access,
availability violation)?

3.4. Analysis Across Layers

In addition to analysis of each layer, we may also want
to explore security properties across layers. Some questions
of interest might include:

1. Are changes in the policy accurately reflected in the
enforcement layer?

2. Is it ever possible for a policy state to override a con-
straint in the enforcement layer?

3. Is the policy enforceable, and if so, what security en-
forcement points are necessary?

A well defined interface may be necessary to relate the
state of one layer to the state of another layer. We suspect
the mapping between the application layer and the enforce-
ment layer will consist of a many-to-one relationship be-
tween application behaviors and enforcement points, since
redundant enforcement points may unnecessarily increase
the complexity and analysis of the model, not to mention in-
crease the potential for implementation flaws. Note that this
mapping is not intended to address security requirements,
but rather simply serve as definition of the relationship be-
tween the application layer and the enforcement layer.

The interface between the enforcement layer and the pol-
icy layer comprises a collection of controllable behaviors
and a collection of observable states. Controllable behav-
iors must exist in the application behavior layer and have a
SEP associated with it. They may be bound to one or more
roles in a policy. Behavior W is an example that would
be included in this collection. The collection of observable
states provides application state information used in condi-
tions attached to policy statements in the policy layer.

4. Related Work

The interconnection of software engineering and secu-
rity engineering gives rise to fascinating research challenges
and opportunities. Currently, the software engineering com-
munity is working toward incorporating security into soft-
ware development process [5, 6, 14]. Security requirements
are elicited via anticipating threats by examining system-
related assets and attacker’s goals, so that countermeasures
can be derived and documented accordingly [7, 11, 19].
Software modeling notations and tools have been extended
to incorporate security concerns so that security properties
can be described in the design models [1, 9].

The model driven security approach SecureUML [1]
introduces a means of merging a role-based access con-
trol (RBAC) security model, which restricts system access
based on the role of the user, into a software model for the
purpose of automatic security mechanism implementation.
In this approach, the security model is described as a meta-
model extension of UML and a system architecture along
with its access control infrastructure can be automatically
generated from the SecureUML models. Our work pur-
sues a related goal of constructing a framework from the
software model and trust management (TM) policy mod-
els, again for the purpose of verifying security properties.
While the specific TM policy language we examine in this
paper is role-based, it differs from [1] in two ways. First,
TM is inherently described by a security policy, which is a
collection of rules describing how the software system may
be used. Although closely related, SecureUML does not
provide a means of reasoning about how policies change,
the impact a policy change has on software, or how incor-
rectly configured policies affect software behavior. Second,
TM involves the extensive use of delegation, which is not
addressed in SecureUML or standard RBAC. Our previous
work [15] investigated the use of model checking to ver-
ify security properties of just the TM security policies. A
framework that represents both security mechanisms and
dynamic delegation policy may provide a means of demon-
strating the robustness of an application’s access control.

UMLsec [10, 9] introduces specific stereotypes and tags
that can be used to model security concerns using UML to
primarily describe security protocols. They have demon-
strated the feasibility of model checking a cryptographic
protocol described in UMLsec, however, it has not been
extended to include access control concerns, which is our
interest.

Finally, [18] describes “enforceable security policies”
as those policies enforceable by mechanisms that moni-
tor system execution. This is significantly related to our
framework as we are interested in determining whether poli-
cies are enforceable. This paper suggests that, individually
and collectively, access control mechanisms can be used to

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

maintain security properties. However our work is inter-
ested in analyzing whether enough software behaviors are
controlled by security mechanisms to ensure that security
properties are upheld.

5. Discussion & Future Work

As in other engineering disciplines, models built in the
early development stages (i.e., requirements and design
stages) describe the important functions of software systems
by abstracting away nonessential aspects. Models improve
the quality of the resulting systems by providing a founda-
tion for early analysis and fault detection [1]. One of the key
benefit of modeling software is the ability to disclose in the
model subtle errors that would be difficult and expensive to
find in an implementation. We contend that modeling and
analysis of both security and application behaviors is a ne-
cessity in designing and implementing secure and reliable
software.

We argue that our layered framework provides signifi-
cant benefits such as:

1. Multi-level analysis of access control from policy to
behavior provides a holistic view of software.

2. Separation of concerns allows independent analysis of
each layer.

3. Given a specific policy, we can test the effect on the
application behavior.

We suggest several areas for future work. First, a concise
notation for describing security enforcement points needs
to be developed. While we have suggested using predicates
to describe guard components in Section 3.3, we suspect
there may be a cleaner notation that includes the collection
of conditions that must hold for the guard to permit its as-
sociated behavior. Second, the mapping between the en-
forcement points and application behaviors, as well as the
policy/enforcement interface needs to be formalized in or-
der to perform automated analysis across layers. Finally,
we need to evaluate this approach in terms of the ability
of these models to capture various access control specifica-
tions as well as verify access control properties.

References

[1] D. Basin, J. Doser, and T. Lodderstedt. Model driven se-
curity: From UML models to access control infrastructures.
ACM TOSEM, 15(1):39–91, 2006.

[2] M. Y. Becker and P. Sewell. Cassandra: Flexible trust man-
agement, applied to electronic health records. In CSFW,
Washington, DC, USA, 2004. IEEE Computer Society.

[3] M. Blaze, J. Feigenbaum, and A. D. Keromytis. Keynote:
Trust management for public-key infrastructures. In LNCS.
Springer Berlin/Heidelberg, 1998.

[4] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. In SSP, Washington, DC, USA, 1996. IEEE
Computer Society.

[5] P. T. Devanbu and S. G. Stubblebine. Software engineering
for security: a roadmap. In ICSE, pages 227–239, 2000.

[6] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone.
Modeling security requirements through ownership, permis-
sion and delegation. In RE, pages 167–176. IEEE Computer
Society, 2005.

[7] C. B. Haley, R. C. Laney, J. D. Moffett, and B. Nuseibeh.
The effect of trust assumptions on the elaboration of security
requirements. In RE. IEEE Computer Society, 2004.

[8] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection
in operating systems. Commun. ACM, 19(8):461–471, 1976.

[9] J. Jurjens. Sound methods and effective tools for model-
based security engineering with UML. In ICSE, pages 322–
331, 2005.

[10] J. Jurjens and P. Shabalin. Automated verification of
UMLsec models for security requirements. In LNCS, pages
365–379, 2004.

[11] R. D. Landtsheer and A. van Lamsweerde. Reasoning
about confidentiality at requirements engineering time. In
ESEC/FSE, pages 41–49. ACM Press, 2005.

[12] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of
a role-based trust management framework. In SSP, pages
114–130. IEEE Computer Society Press, May 2002.

[13] N. Li, J. C. Mitchell, and W. H. Winsborough. Beyond
proof-of-compliance: Security analysis in trust manage-
ment. JACM, 52(3):474–514, 2005.

[14] G. McGraw. Software security. pages 80–83, 2004.
[15] M. Reith, J. Niu, and W. Winsborough. Apply model check-

ing to security analysis in trust management. 2007. To ap-
pear in SECOBAP.

[16] R. Sandhu, V. Bhamidipati, and Q. Munawer. The AR-
BAC97 model for role-based administration of roles. ACM
Trans. Inf. Syst. Secur., 2(1):105–135, 1999.

[17] R. S. Sandhu, E. J. Coyne, H. L. Feinstern, and C. E.
Youman. Role-based access control models. IEEE Com-
puter, 29(2):38–47, 1996.

[18] F. B. Schneider. Enforceable security policies. ACM Trans.
Inf. Syst. Secur., 3(1):30–50, 2000.

[19] A. van Lamsweerde. Elaborating security requirements by
construction of intentional antimodels. In ICSE, pages 148–
157. ACM Press, 2004.

[20] J. M. Wing. A symbiotic relationship between formal meth-
ods and security. In CSDA, Washington, DC, USA, 1998.
IEEE Computer Society.

[21] T. Y. C. Woo and S. S. Lam. Authorizations in distributed
systems: A new approach. Journal of Computer Security,
2(2-3):107–136, 1993.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

