
Design Module: A Modularity Vision Beyond Code

- Not only program code but also a design model is a module -

Naoyasu Ubayashi and Yasutaka Kamei

Kyushu University, Japan

May 18, 2013

MiSE 2013 (ICSE Workshop)

Overview

2

• We provide a novel idea that treats a design model as

a first-class software module.

• A system cannot be compiled without design modules.

• A developer has to create and modify not only

program modules but also design modules.

Outline

Motivation

 Design Module: New Modularity Vision

 Integration of Design and Program Modules

Conclusions

3

Motivation

4

public class Subject{  private Vector observers =

new Vector();
 private String state = “”;    public void

addObserver(Observer o){ … }  public void

removeObserver(Observer o){ … }  public void

notify(){  Iterator i = observers.iterator(); 
while(i.hasNext()){  Observers o =

(Observer)i.next(); 
o.update(this);  }  }

 public void setState(String s){ state = s; }

 public String getState() {return state; } }

MDD is fine, but …

5

Code

Generation

Design

Programming

Our Opinion

Programming should not disappear!

 Programming has not yet

disappeared from most

software development

projects.

 Both design activities and

programming have their

own roles.

 The key point is Abstraction!

6

Design Programming

Abstraction

Abstraction, abstraction, …

Why is it that some software engineers and

computer scientists are able to produce clear,

elegant designs and programs, while others

cannot?

 Is it possible to improve these skills through

education and training?

Critical to these questions is the notion of

abstraction.

7

Kramer, J., Is Abstraction the Key to Computing?

Communications of the ACM, Vol. 50, Issue 4, pp.36-42, 2007.

public class Subject{  private Vector observers

= new Vector();
 private String state = “”;    public void
addObserver(Observer o){ … }  public void
removeObserver(Observer o){ … }  public void
notify(){  Iterator i = observers.iterator(); 
while(i.hasNext()){  Observers o =
(Observer)i.next(); 
o.update(this);  }  }

 public void setState(String s){ state = s; }

 public String getState() {return state; } }

What is the purpose of design modeling?

8

Detailed Design

Abstract Design

Full code generation

Skeleton generation

or Hand coding

Abstraction and Modularity

 Abstraction is affected by a language

mechanism, especially modularity.

 Although a program is composed of program

modules, design models are not regarded as

software modules.

9

Why?

Not only program code but also a

design model is a module

10

Abstract Design Code

public class Subject{  private Vector observers =

new Vector();
 private String state = “”;    public void
addObserver(Observer o){ … }  public void
removeObserver(Observer o){ … }  public void
notify(){  Iterator i = observers.iterator(); 
while(i.hasNext()){  Observers o =
(Observer)i.next(); 
o.update(this);  }  }

 public void setState(String s){ state = s; }

 public String getState() {return state; } }

public class Subject{  private Vector observers =

new Vector();
 private String state = “”;    public void
addObserver(Observer o){ … }  public void
removeObserver(Observer o){ … }  public void
notify(){  Iterator i = observers.iterator(); 
while(i.hasNext()){  Observers o =
(Observer)i.next(); 
o.update(this);  }  }

 public void setState(String s){ state = s; }

 public String getState() {return state; } }

public class Subject{  private Vector observers =

new Vector();
 private String state = “”;    public void
addObserver(Observer o){ … }  public void
removeObserver(Observer o){ … }  public void
notify(){  Iterator i = observers.iterator(); 
while(i.hasNext()){  Observers o =
(Observer)i.next(); 
o.update(this);  }  }

 public void setState(String s){ state = s; }

 public String getState() {return state; } }

Our Approach

 A UML design model such as a class diagram

and a sequence diagram is regarded as a

design module.

11

But, How ?

Its Answer is Archface!

Ubayashi, N., Nomura, J., and Tamai, T., Archface: A Contract Place

Where Architectural Design and Code Meet Together, ICSE 2010.

Design Module:

New Modularity Vision

12

Archface-Centric Modularity

13

Archface =

Design + Program Interface

14

 public class Subject{  private

Vector observers = new Vector();
 private String state = “”;
…

}

Code

Abstract Design

Archface
(Exposure of archpoints)

Contract between
design and code

A set of

design

points

A set of
program

points

SMT

solv

er

Abstraction level can

be defined by

selecting archpoints!

Archpoints, Program points, …

15

AOP based archpoint selection!

Abstraction＝

Bisimulation in terms of archpoints

16

Abstraction level can be defined by selecting archpoints!

Archface Guided Abstraction

Refinement

17

Design and code

can co-evolve each

other by

 fluidly moving

between them

and

 seeking an

appropriate

abstraction level.

Inspired by CEGAR !

Integration of

Design and Program Modules

18

Integration

19

Does a design

module model an

archface?

Does a program

module implement

an archface?

Type Check for a Design Model

20

Check if an archpoint

is modeled as a

design point.

Ubayashi, N. and Kamei, Y., Verifiable Architectural Interface for Supporting

Model-Driven Development with Adequate Abstraction Level, MiSE 2012.

Type Check for Program Code

21

Check if an

archpoint is

implemented as a

 program point.

Archface-Centric IDE

22

Ongoing Work

Conclusions

23

Summary

We rethought both modularity and compilation

in the light of the abstraction between design

and implementation.

 In our approach, not only program code but

also a design model is a module.

 Archface plays an important role in our

modularity vision.

24

25

26

Thank you for your attention.

I love modeling.

I love programming too.

