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Overview 
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• We provide a novel idea that treats a design model as 

a first-class software module. 

• A system cannot be compiled without design modules. 

• A developer has to create and modify not only 

program modules but also design modules. 
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Motivation 
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public class Subject{   private Vector observers = 

new Vector(); 
    private String state = “”;      public void 

addObserver(Observer o){ … }   public void 

removeObserver(Observer o){ … }   public void 

notify(){     Iterator i = observers.iterator();     
while(i.hasNext() ){       Observers o = 

(Observer)i.next();       
o.update( this );     }   } 

    public void setState(String s){ state = s; } 

    public String getState() {return state; } } 

MDD is fine, but … 
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Code 

Generation 

Design 

Programming 

Our Opinion 



Programming should not disappear! 

 Programming has not yet 

disappeared from most 

software development 

projects. 

 Both design activities and 

programming have their 

own roles. 

 The key point is Abstraction! 

 

6 

Design Programming 

Abstraction 



Abstraction, abstraction, … 

Why is it that some software engineers and 

computer scientists are able to produce clear, 

elegant designs and programs, while others 

cannot?  

 Is it possible to improve these skills through 

education and training? 

Critical to these questions is the notion of 

abstraction. 
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Kramer, J., Is Abstraction the Key to Computing? 

Communications of the ACM, Vol. 50, Issue 4, pp.36-42, 2007. 



public class Subject{   private Vector observers 

= new Vector(); 
    private String state = “”;      public void 
addObserver(Observer o){ … }   public void 
removeObserver(Observer o){ … }   public void 
notify(){     Iterator i = observers.iterator();     
while(i.hasNext() ){       Observers o = 
(Observer)i.next();       
o.update( this );     }   } 

    public void setState(String s){ state = s; } 

    public String getState() {return state; } } 

What is the purpose of design modeling? 
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Detailed Design  

Abstract Design  

Full code generation 

Skeleton generation 

or Hand coding 



Abstraction and Modularity 

 Abstraction is affected by a language 

mechanism, especially modularity. 

 Although a program is composed of program 

modules, design models are not regarded as 

software modules. 
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Why? 



Not only program code but also a 

design model is a module  
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Abstract Design  Code  

public class Subject{   private Vector observers = 

new Vector(); 
    private String state = “”;      public void 
addObserver(Observer o){ … }   public void 
removeObserver(Observer o){ … }   public void 
notify(){     Iterator i = observers.iterator();     
while(i.hasNext() ){       Observers o = 
(Observer)i.next();       
o.update( this );     }   } 

    public void setState(String s){ state = s; } 

    public String getState() {return state; } } 

public class Subject{   private Vector observers = 

new Vector(); 
    private String state = “”;      public void 
addObserver(Observer o){ … }   public void 
removeObserver(Observer o){ … }   public void 
notify(){     Iterator i = observers.iterator();     
while(i.hasNext() ){       Observers o = 
(Observer)i.next();       
o.update( this );     }   } 

    public void setState(String s){ state = s; } 

    public String getState() {return state; } } 

public class Subject{   private Vector observers = 

new Vector(); 
    private String state = “”;      public void 
addObserver(Observer o){ … }   public void 
removeObserver(Observer o){ … }   public void 
notify(){     Iterator i = observers.iterator();     
while(i.hasNext() ){       Observers o = 
(Observer)i.next();       
o.update( this );     }   } 

    public void setState(String s){ state = s; } 

    public String getState() {return state; } } 



Our Approach 

 A UML design model such as a class diagram 

and a sequence diagram is regarded as a 

design module. 
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But, How ? 

Its Answer is Archface! 

Ubayashi, N., Nomura, J., and Tamai, T., Archface: A Contract Place 

Where Architectural Design and Code Meet Together, ICSE 2010. 



Design Module: 

New Modularity Vision 
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Archface-Centric Modularity 
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Archface = 

Design + Program Interface 
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 public class Subject{   private 

Vector observers = new Vector(); 
    private String state = “”; 
… 

} 

Code 

Abstract Design 

Archface 
(Exposure of archpoints) 

Contract between 
design and code  

A set of 

design 

points 

A set of 
program 

points 

SMT 

solv

er 

Abstraction level can 

be defined by 

selecting archpoints! 



Archpoints, Program points, … 

15 

AOP based archpoint selection! 



Abstraction＝ 

Bisimulation in terms of archpoints 
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Abstraction level can be defined by selecting archpoints! 



Archface Guided Abstraction 

Refinement 
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Design and code 

can co-evolve each 

other by 

 

 fluidly moving 

between them 

and 

 seeking an 

appropriate 

abstraction level. 

Inspired by CEGAR ! 



Integration of 

Design and Program Modules 
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Integration 
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Does a design 

module model an 

archface? 

Does a program 

module implement 

an archface? 



Type Check for a Design Model  
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Check if an archpoint 

is modeled as a 

design point. 

Ubayashi, N. and Kamei, Y., Verifiable Architectural Interface for Supporting 

Model-Driven Development with Adequate Abstraction Level, MiSE 2012. 



Type Check for Program Code 
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Check if an 

archpoint is 

implemented as a 

 program point. 



Archface-Centric IDE 
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Ongoing Work 



Conclusions 
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Summary 

We rethought both modularity and compilation 

in the light of the abstraction between design 

and implementation. 

 In our approach, not only program code but 

also a design model is a module. 

 Archface plays an important role in our 

modularity vision. 
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Thank you for your attention. 

I love modeling. 

I love programming too. 


