
Modeling the Environment in Software-Intensive Systems

Carlo A. Furia, Matteo Rossi, and Dino Mandrioli
Dipartimento di Elettronica e Informazione, Politecnico di Milano

{furia, rossi, mandrioli}@elet.polimi.it

Abstract

In this paper we argue that the modeling activity in
the development of software-intensive systems should
formalize as much as possible of the environment in
which the application being developed operates. We
also show that a rich formal model of the environment
helps developers clearly state requirements that might
typically be considered intrinsically informal (or non-
formalizable in general). To illustrate this point, we
show how a requirement for “orderly safe traffic” in
a traffic system can be modeled, and we briefly discuss
the benefits thereof.

1. Introduction

In today’s engineering practice, we witness the ever
increasing pervasiveness of software in a wide and het-
erogeneous variety of systems — where it was absent in
the past. From a software engineering viewpoint, a nat-
ural consequence of this fact is the growing need to un-
derstand modeling of such software-intensive systems.

A software-intensive system (SIS) is a heteroge-
neous system whose software components are entan-
gled with — and thus deeply interact with — other non-
software components, such as mechanical parts, chem-
ical processes, or even social organizations. The non-
software components have in common their being part
of the physical world. We denote by the term envi-
ronment the non-software components together with the
physical world to which they belong. Therefore, a SIS
can be defined as a system with software components
that interact with an external environment. Embedded
systems constitute a very large part of such class of sys-
tems.

When it comes to modeling (and analyzing) a SIS,
the central role of the environment constitutes the main
concern of the software engineer. More precisely, there
are at least two broad sets of properties of the environ-
ment that have to be modeled in a SIS: indicative prop-

erties and optative properties [4]. Indicative properties
constitute a model of the physical world as it is; op-
tative properties are instead properties that we would
like to hold in the environment, as a consequence of the
functionality (in a broad sense) of the whole system we
build. Optative properties of the environment constitute
the requirements of the system [4]. Therefore, in a SIS
the interaction of the software components with the en-
vironment should meet the requirements.

Notice that, although a conspicuous number of SIS
can be considered as controlled systems, the (more or
less) traditional modeling techniques for control sys-
tems are not enough to fulfill all the modeling needs of
a SIS. In fact, the difficulty of modeling a SIS lies pre-
cisely in the tight interaction of two traditionally dis-
tinct domains. Namely, one has to find ways to join
software modeling techniques with physical modeling
paradigms, without giving up the peculiarities of either.

In other words, analyzing the correctness of a SIS
requires an accurate model: (1) of the environment; (2)
of the software system; and (3) of their interaction. The
optative part of the environment’s model constitutes the
requirements, whereas the software system model, at
the highest level of abstraction, constitutes its specifi-
cation. Then, verifying the system amounts to proving
that the specification entails the requirements, with the
given assumptions about the interaction between soft-
ware and environment.

Traditionally, requirements engineering has been the
realm of informal modeling and reasoning. To some ex-
tent, it is inevitable that some parts of the requirements
may be given only an informal characterization, as they
ultimately reside in customers’ expectations about what
the system should achieve. Nonetheless, it is increas-
ingly argued that formalization can (and should) play a
role even at the requirements level, and thus in dealing
with properties of the environment [5].

However, how deep the formal modeling of environ-
mental properties should (or can) be is still a debated
issue. Even if “a formalized requirement is always in-
complete” [5], how much effort and accuracy should be

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

invested in introducing the formalization of a significant
part of a SIS’s requirements (and environment)?

In this paper, we argue that formalization can be
pushed very deep in the environment domain. We also
demonstrate that this is not only possible, but also desir-
able, as it brings several advantages and capabilities in
the analysis of the modeled system. In fact, the bound-
ary between what can be formalized and what cannot
is often fuzzy and application-dependent. Therefore,
attempts at formalizing aspects that are “deeper in the
environment” [5] of a SIS often result in a better un-
derstanding of the system and of the boundaries them-
selves. This usually offers the possibility of achieving a
better system design, a more accurate verification pro-
cess, and, more generally, a higher confidence in the
dependability of the system that is built.

Some recent work to which we contributed [7, 1] has
provided, among other things, additional evidence to
these claims. In this paper we develop the theme fur-
ther, with particular focus on SIS, through an example
(a traffic system), shown in Section 3.

2. Pushing Formalization Deep in the Envi-
ronment

In order to deepen the level of formality in model-
ing a SIS, two key “ingredients” should be available: a
meta-model of the aspects involved and a suitable for-
mal notation.

2.1. Meta-Model

A meta-model lays out precise definitions for the
three macro components of a SIS that we have out-
lined above; namely: the environment (and its require-
ments), the software system (and its specification), and
the interface between the two. A well-understood meta-
model is very important to guide the formalization of
the system, and even to set the boundaries between what
is formalized and what is not. In this paper, we will re-
fer to the meta-model that we have recently proposed
in [7], which enhances Gunter et al.’s well-known ref-
erence model [2], and which we omit for reasons of
brevity.

2.2. Formal Notation

The other basic ingredient for a deep formalization
of a SIS is a suitable formal notation.

As we have outlined in Section 1, SISs are character-
ized by the heterogeneity of their components. There-
fore, the formal notation should be very flexible, rich,

and expressive, so that it can be used to describe a vari-
ety of aspects of the system: the diverse components,
their dynamics (i.e., how they evolve over time), the
data they exchange, etc. As SISs often have real-time
requirements, the notation should permit to easily de-
scribe a rich set of temporal features. Finally, the no-
tation should deal with the description of modules and
their composition in a natural and powerful way, since
SISs are inherently modular (and their analysis benefits
greatly from a modular model).

ArchiTRIO [6] is a UML-compatible formal lan-
guage which, at its core, has a very expressive and gen-
eral metric temporal logic that permits to describe the
dynamics and temporal constraints of the phenomena
of interest (be they in the environment or in the machine
domain). It is endowed with the modular constructs and
encapsulation mechanisms of UML such as class and
interface, which retain the same meaning and graphical
representation they have in UML.

We will use the ArchiTRIO language for the devel-
opment of the example of Section 3. While we will
explain the features of ArchiTRIO when appropriate, a
presentation of its syntax and semantics is beyond the
scope of the present article, and is omitted; the inter-
ested reader can refer to [6] for further details about the
notation. Of course, other notations with similar fea-
tures could be used to pursue the same approach.

3. Example: Traffic System

In [5], Jackson argues that:

“Although a physical and human envi-
ronment is a nonformal domain, the engi-
neering task of developing the system must
rely—somewhat as in established branches of
engineering—on formalized descriptions of
the physical world and on reasoning about
those descriptions. It’s possible to bring these
formalizations and the associated reasoning
within the program specification’s purview,
and hence within the scope of some formal
verification tools and techniques.”

Our point of view is similar to the one presented
by Jackson, but with some differences. We maintain
that it is important, for the correct development of a
SIS, to provide a mathematical (i.e., formal) model of
the environment that is as accurate as possible with-
out it becoming unwieldy. Also, we argue that such a
model need not exist only in relation to the application’s
specification; rather, as discussed also in [7], it should
be developed separately (i.e., using only environment-

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

specific variables), and then “connected” to the specifi-
cation through a suitable set of axioms. Finally, we hold
that the verification activity on the formal model of the
environment should begin as soon as possible, possibly
(if not preferably) before the latter has been related to
the system’s specification.

In this section, we illustrate our approach and point
of view on modeling through a common example taken
from [5], a traffic system. The goal of the traffic system
is to ensure “orderly safe traffic”. Let us formally define
it through the ArchiTRIO formal language [6].

As mentioned in [5], the requirement of such a sys-
tem is “deep in the environment”, so that a model of a
number of physical elements (roads, vehicles, pedestri-
ans, etc.) must be introduced before one can formulate
it. Figure 1 shows a fragment of a UML class diagram
(which is also an ArchiTRIO class diagram) represent-
ing the physical elements that are necessary to formu-
late the requirement. As the figure shows, we focus our
attention on a single intersection, which is the termi-
nus of N ROADS roads, where N ROADS is a parameter of
the intersection (a road that continues after the intersec-
tion is represented through two separate RoadEnds). At
every road end vehicles and pedestrians arriving at the
intersection can accumulate in queues; both the queue
of vehicles and the queue of pedestrians are represented
as instances of the generic class DynamicQueue: when-
ever a new vehicle v (resp. pedestrian p) arrives at the
intersection, this is represented through an occurrence
of event arrive(v) (resp. arrive(p)) in QueueOfVehicles
(resp. QueueOfPedestrians); similarly, event depart(v)
(resp. depart(p)) represents a vehicle (resp. pedestrian)
leaving the intersection.

3.1. Environment Formalization

With a formal language as expressive as ArchiTRIO
one can formally define the behavior of the queues
informally described above. In fact, by exploit-
ing the object-oriented features of ArchiTRIO, this
can be achieved simply by adding formulas to class
DynamicQueue, of which both QueueOfVehicles and
QueueOfPedestrians are instances.

For example, the following formula of class
DynamicQueue defines how the state s of a queue
evolves over time whenever a new arrival or departure
occurs.

∀q : Queue[T](¬q.isEmpty =⇒
(s = q

⇐⇒
Since(�e1 : T(arrive(e1) ∨ depart(e1)),

∃e2 : T, q′ : Queue[T](
(arrive(e2) ∧ s = q′ ∧ q = q′.enqueue(e2))∨
(depart(e2) ∧ s = q′ ∧ q = q′.dequeue)))))

More precisely, the formula defines that, in any instant,
the state of the queue is q (with q a value of generic
type Queue, which will be further described below),
and there is at least one queued “actor” (i.e. an element
of a generic type T) if and only if there is an element
e2 that either previously arrived (and queued up) or de-
parted (and left the queue), and noone has arrived nor
left since.

For simplicity, we could also specify that one can
leave the queue only if he/she is at its head (which,
for example, in the case of a queue of vehicles repre-
sents the fact that overtaking a vehicle at the front of
the queue is not allowed, nor one can make a U-turn
and leave the queue). This would be described by the
following formula (also of class DynamicQueue):

∀e : T(depart(e) ⇒ e = s.head)

The value of state s of a DynamicQueue at a cer-
tain instant t describes what elements are queued at t,
and in what order. Since elements enter and leave the
queue in a First-In-First-Out policy, it is most natural to
model the possible values of s through a classic “queue
data type”, such as for example the one defined in [3].1

Hence, the value of state s is defined to be of generic
type Queue. Type Queue can also be formally defined,
in a manner similar to that of [3]. For example, the fol-
lowing formula of class Queue defines (in a “classic”
fashion) what element is the head of a queue (which
essentially states the FIFO nature of Queue):

∀q : Queue[T], e, e′ : T(
(q.enqueue(e)).head = e′

⇐⇒
(q.isEmpty ∧ e′ = e) ∨ (¬q.isEmpty ∧ e′ = q.head))

where q.enqueue(e) is the queue (say, q′) obtained by
appending element e (of generic type T) to queue q,
hence (q.enqueue(e)).head is the head of q′.

3.2. Requirements Formalization

After having introduced the elements of Figure 1, we
can now state a possible requirement of “orderly safe
traffic”. Informally, we state that the traffic is orderly
and safe if vehicles and pedestrians arriving at the in-
tersection from directions that are “incompatible” with
each other (e.g., perpendicular ones) enter the intersec-
tion with sufficient delays from each other.

To formalize this requirement, we first introduce
a predicate, conflicting(r1, r2), in class Intersection
(where r1 and r2 are RoadEnds of the Intersection it-
self); intuitively, predicate conflicting describes which

1Note that there is no notion of “implementation” or “program-
ming” here: We use the queue data type only as a device to model
information, without any reference to any programming activity.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Figure 1. Elements of the environment of the traffic system.

roads are “incompatible”, and it is true for all those pairs
of roads from which vehicles (or pedestrians) cannot
flow into the intersection at the same time. Finally, the
requirement above can be represented by the following
ArchiTRIO formula of class Intersection:

OrderlySafeTrafficReq:
∀r1, r2 : RoadEnd(

conflicting(r1, r2) ∧
∃v1 : Vehicle(r1.vehicles.depart(v1))

=⇒
�v2 : Vehicle(Within(r2.vehicles.depart(v2), D SAFE)) ∧
�p : Pedestrian(Within(r2.pedestrians.depart(p), D SAFE)))

Formula OrderlySafeTrafficReq states that, if r1

and r2 are two conflicting roads of the intersection and
a vehicle enters the intersection from road r1, then no
vehicles and no pedestrians enter (or have entered) the
intersection from road r2 within D SAFE time units from
the current instant. Note that, in this model, D SAFE is a
constant delay that is a parameter of class Intersection;
however, in a different (and a little more sophisticated)
model it could depend on the speed of the vehicle, its
direction, etc.

3.3. Discussion

Let us immediately note that the notion of “orderly
safe traffic” stated above is by no means the only pos-
sible one (it is probably not the most accurate, either).
For example, one may employ different notions, which
take into account not only the road from which vehicles
or pedestrians come, but also the one they wish to take;
also, another possible definition of “orderly safe traffic”
could be “the absence of accidents”. Such notions could
be formalized in ways that are similar to the one shown

above, provided suitable additional elements are intro-
duced in the model (e.g., the notions of “next road” and
“position” for vehicles and pedestrians).

We argue that the mere exercise of precisely express-
ing the vague and imprecise notion of what constitutes
“orderly and safe traffic” is a necessary step when one
sets out to design a traffic control system. In fact, dif-
ferent notions of “orderly and safe traffic” might entail
different solutions to the problem. For example, the re-
quirement above is probably best satisfied by employing
traffic lights; on the other hand, a requirement that asked
for “minimum separation” between cars entering the in-
tersection might be satisfied through a roundabout, and
so on. Even this simple example shows that deepening
the formalization of requirements sheds early light on
the design decisions to be taken (later).

After the requirement has been precisely stated, the
next design decision is how to meet it. As hinted above,
requirement OrderlySafeTrafficReq does not mention
the use of traffic lights; in fact the choice of employ-
ing traffic lights to ensure “orderly and safe traffic” is
already a design decision (one taken in the early stages
of the development process, but still a design decision).
If, however, it is decided to use traffic lights, from the
modeling point of view the next step would be to in-
troduce the elements on which the specification will be
built (i.e., as remarked in [7], the machine-domain vari-
ables). Following the lead of [7], then, one would intro-
duce new elements such as light units, traffic sensors,
system controller, and build a suitable set of axioms that
describe how these elements are related to the physical
components of Section 3.

While such an exercise is outside the scope of this
article, let us hint at how it could be proved that the de-
signed system actually satisfies the requirement of Sec-

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

tion 3. If, for example, we assumed “good behavior” by
pedestrians and drivers (which could be formalized by
formulas stating that “a vehicle will not enter the inter-
section with a red light”), then a control system which
ensures that no green lights are on at the same time on
conflicting roads and that periodically all lights are red
for a certain amount of time (which will depend in some
way from D SAFE) could be formally shown to guaran-
tee the requirement as a logical consequence of such
properties, and of the indicative properties of the envi-
ronment, e.g., the formal description of the queues (see
[1] for further details on this issue). Finally, let us note
that proving properties in a deductive fashion is not a
requisite in our approach; utility requirements stating
a desired average traffic of vehicles through the inter-
section could be analyzed using different mathematical
tools such as, for example, Markov chains.

4. Conclusion

In this paper we argued through a simple common
example that in software-intensive systems great care
should be given to the formal modeling of the environ-
ment with which the application interacts. Also, we
showed how formal notations can be “pushed deep in
the environment” and used to describe not only the soft-
ware parts of the application, but also the physical ele-
ments which influence its behavior. This allowed us to
formally express an “orderly safe traffic” requirement
that might typically be considered inherently informal.

Acknowledgments

The authors thank Elisabeth Strunk and John Knight for
the fruitful discussions and collaboration, which shaped
several of the views expressed in this article.

References

[1] C. A. Furia, M. Rossi, E. A. Strunk, D. Mandrioli, and
J. C. Knight. Raising formal methods to the requirements
level. Technical Report 2006.64, Dipartimento di Elet-
tronica e Informazione, Politecnico di Milano, November
2006. Also: Technical Report CS-2006-24, Department
of Computer Science, University of Virginia.

[2] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave.
A reference model for requirements and specifications.
IEEE Software, 17(3):37–43, 2000.

[3] J. V. Guttag and J. J. Horning. Larch: Languages and
Tools for Formal Specification. Springer-Verlag, 1993.

[4] M. Jackson. Software Requirements and Specifications.
Addison-Wesley, 1995.

[5] M. Jackson. What can we expect from program verifica-
tion? IEEE Computer, 39(10):65–71, 2006.

[6] M. Pradella, M. Rossi, and D. Mandrioli. ArchiTRIO:
A UML-compatible language for architectural descrip-
tion and its formal semantics. In Proceedings of FORTE
2005, volume 3731 of Lecture Notes in Computer Sci-
ence, pages 381–395. Springer-Verlag, 2005.

[7] E. A. Strunk, C. A. Furia, M. Rossi, J. C. Knight, and
D. Mandrioli. The engineering roles of requirements and
specification. Technical Report CS-2006-21, Department
of Computer Science, University of Virginia, October
2006. Also: Technical Report 2006.61, Dipartimento di
Elettronica e Informazione, Politecnico di Milano.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

